Related Articles
Ultrasensitive photoelectric detection with room temperature extremum
Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 1011 cm·Hz1/2·W−1 and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 1012 cm·Hz1/2·W−1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.
Flexible micromachined ultrasound transducers (MUTs) for biomedical applications
The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively. In addition, the development of flexible ultrasound transducers based on these principles has opened up new possibilities for biomedical applications, including biomedical imaging, sensing, and stimulation. This review provides a detailed discussion of the need for flexible micromachined ultrasound transducers (MUTs) and potential applications, their specifications, materials, fabrication, and electronics integration. Specifically, the review covers fabrication approaches and compares the performance specifications of flexible PMUTs and CMUTs, including resonance frequency, sensitivity, flexibility, and other relevant factors. Finally, the review concludes with an outlook on the challenges and opportunities associated with the realization of efficient MUTs with high performance and flexibility.
Inverted pyramid 3-axis silicon Hall-effect magnetic sensor with offset cancellation
Microelectronic magnetic sensors are essential in diverse applications, including automotive, industrial, and consumer electronics. Hall-effect devices hold the largest share of the magnetic sensor market, and they are particularly valued for their reliability, low cost and CMOS compatibility. This paper introduces a novel 3-axis Hall-effect sensor element based on an inverted pyramid structure, realized by leveraging MEMS micromachining and CMOS processing. The devices are manufactured by etching the pyramid openings with TMAH and implanting the sloped walls with n-dopants to define the active area. Through the use of various bias-sense detection modes, the device is able to detect both in-plane and out-of-plane magnetic fields within a single compact structure. In addition, the offset can be significantly reduced by one to three orders of magnitude by employing the current-spinning method. The device presented in this work demonstrated high in-plane and out-of-plane current- and voltage-related sensitivities ranging between 64.1 to 198 V A−1 T−1 and 14.8 to 21.4 mV V−1 T−1, with crosstalk below 4.7%. The sensor exhibits a thermal noise floor which corresponds to approximately (0.5,mu text{T}/sqrt{text{Hz}}) at 1.31 V supply. This novel Hall-effect sensor represents a promising and simpler alternative to existing state-of-the-art 3-axis magnetic sensors, offering a viable solution for precise and reliable magnetic field sensing in various applications such as position feedback and power monitoring.
A robust organic hydrogen sensor for distributed monitoring applications
Hydrogen is an abundant and clean energy source that could help to decarbonize difficult-to-electrify economic sectors. However, its safe deployment relies on the availability of cost-effective hydrogen detection technologies. We describe a hydrogen sensor that uses an organic semiconductor as the active layer. It can operate over a wide temperature and humidity range. Ambient oxygen p-dopes the organic semiconductor, which improves hole transport, and the presence of hydrogen reverses this doping process, leading to a drop in current and enabling reliable and rapid hydrogen detection. The sensor exhibits a high responsivity (more than 10,000), fast response time (less than 1 s), low limit of detection (around 192 ppb) and low power consumption (less than 2 μW). It can operate continuously for more than 646 days in ambient air at room temperature. We show that the sensor outperforms a commercial hydrogen detector in realistic sensing scenarios, illustrating its suitability for application in distributed sensor networks for early warning of hydrogen leaks and preventing explosions or fires.
Toolkit for integrating millimeter-sized microfluidic biomedical devices with multiple membranes and electrodes
In recent years, microfluidic systems have evolved to incorporate increasingly complex multi-layer and multi-material structures. While conventional 2-dimensional microfluidic systems are typically fabricated with lithographic techniques, the increase in system complexity necessitates a more versatile set of fabrication techniques. Similarly, although 3D printing can easily produce intricate microfluidic geometries, integrating multiple membranes and electrode components remains challenging. This study proposes a toolkit for fabricating free-standing 3-dimensional microfluidic systems for biomedical devices, incorporating flow channels, electrodes, and membranes. The fabrication techniques include molding separation using 3D printed molds, laser-based processing, and component assembly, each achieving micron resolution. Here, we introduce a novel approach to integrate membranes into microfluidics by directly curing elastomer-based microfluidics with the membrane through replica molding, while preserving membrane functionality by effectively removing elastomer residues through reactive ion etching. The resulting membrane-elastomer microfluidic component significantly simplifies the assembly of intricate microfluidic systems, reducing the device size to millimeter dimensions, suitable for implantable applications. The toolkit’s versatility is demonstrated by a redox flow iontophoretic drug delivery prototype at the millimeter scale, featuring two electrodes, four membranes, and four microfluidic channels.
Responses