Related Articles
LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
SREBF1-based metabolic reprogramming in prostate cancer promotes tumor ferroptosis resistance
Metabolic reprogramming in prostate cancer has been widely recognized as a promoter of tumor progression and treatment resistance. This study investigated its association with ferroptosis resistance in prostate cancer and explored its therapeutic potential. In this study, we identified differences in the epithelial characteristics between normal prostate tissue and tissues of various types of prostate cancer using single-cell sequencing. Through transcription factor regulatory network analysis, we focused on the candidate transcription factor, SREBF1. We identified the differences in SREBF1 transcriptional activity and its association with ferroptosis, and further verified this association using hdWGCNA. We constructed a risk score based on SREBF1 target genes associated with the biochemical recurrence of prostate cancer by combining bulk RNA analysis. Finally, we verified the effects of the SREBPs inhibitor Betulin on the treatment of prostate cancer and its chemosensitization effect. We observed characteristic differences in fatty acid and cholesterol metabolism between normal prostate tissue and prostate cancer tissue, identifying high transcriptional activity of SREBF1 in prostate cancer tissue. This indicates that SREBF1 is crucial for the metabolic reprogramming of prostate cancer, and that its mediated metabolic changes promoted ferroptosis resistance in prostate cancer in multiple ways. SREBF1 target genes are associated with biochemical recurrence of prostate cancer. Finally, our experiments verified that SREBF1 inhibitors can significantly promote an increase in ROS, the decrease in GSH, and the decrease in mitochondrial membrane potential in prostate cancer cells and confirmed their chemosensitization effect in vivo. Our findings highlighted a close association between SREBF1 and ferroptosis resistance in prostate cancer. SREBF1 significantly influences metabolic reprogramming in prostate cancer cells, leading to ferroptosis resistance. Importantly, our results demonstrated that SREBF1 inhibitors can significantly enhance the therapeutic effect and chemosensitization of prostate cancer, suggesting a promising therapeutic potential for the treatment of prostate cancer.
Estrogen-related receptor alpha (ERRα) controls the stemness and cellular energetics of prostate cancer cells via its direct regulation of citrate metabolism and zinc transportation
Compared to most tumors that are more glycolytic, primary prostate cancer is less glycolytic but more dependent on TCA cycle coupled with OXPHOS for its energy demand. This unique metabolic energetic feature is attributed to activation of mitochondrial m-aconitase in TCA caused by decreased cellular Zn level. Evidence suggests that a small subpopulation of cancer cells within prostate tumors, designated as prostate cancer stem cells (PCSCs), play significant roles in advanced prostate cancer progression. However, their cellular energetics status is still poorly understood. Nuclear receptor ERRα (ESRRA) is a key regulator of energy metabolism. Previous studies characterize that ERRα exhibits an upregulation in prostate cancer and can perform multiple oncogenic functions. Here, we demonstrate a novel role of ERRα in the control of stemness and energetics metabolism in PCSCs via a mechanism of combined transrepression of Zn transporter ZIP1 in reducing intracellular Zn uptake and transactivation of ACO2 (m-aconitase) in completion of TCA cycle. Results also showed that restoration of Zn accumulation by treatment with a Zn ionophore Clioquinol could significantly suppress both in vitro growth of PCSCs and also their in vivo tumorigenicity, implicating that enhanced cellular Zn uptake could be a potential therapeutic approach for targeting PCSCs in advanced prostate cancer.
Targeting of TAMs: can we be more clever than cancer cells?
With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Unequal roles of cities in the intercity healthcare system
Cities are increasingly interdependent regarding healthcare provision and demand. However, the intercity healthcare system (IHS) behind the nationwide patient mobility remains insufficiently understood. Here, leveraging human mobility big data, we reveal cities’ roles in providing and demanding quality healthcare within the IHS of China. We find that 8% of Chinese cities are national and regional hubs that address the healthcare shortage of cities deprived of quality healthcare, while 63% of the cities that are unnoticed compensate for migrant workers being denied healthcare rights in megacities. The IHS generates new structural inequalities in healthcare access exhibiting a Matthew effect. The few cities (12%) that are already rich in healthcare resources benefit more and can strengthen their advantages in providing healthcare to local populations (32% of China’s total population). The many cities (35%), while facing healthcare shortages, are further disadvantaged in ensuring adequate healthcare for their local populations (26% of China’s total population).
Responses