Related Articles
Fasting appetite-related gut hormone responses after weight loss induced by calorie restriction, exercise, or both in people with overweight or obesity: a meta‐analysis
Altered appetite-related gut hormone concentrations may reflect a physiological adaptation facilitating weight regain after weight loss. This review investigates hormonal changes after weight loss achieved through calorie restriction (CR), exercise (EX), or both combined (CREX).
Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Moderate-to-vigorous and light-intensity aerobic exercise yield similar effects on food reward, appetitive responses, and energy intake in physically inactive adults
To examine the effect of acute aerobic exercise at moderate-to-vigorous and light intensity on food reward, appetite sensation, and energy intake (EI) in physically inactive adults.
Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain
Chronic stress is a causal antecedent condition for major depressive disorder and associates with altered patterns of neural connectivity. There are nevertheless important individual differences in susceptibility to chronic stress. How functional connectivity (FC) amongst interconnected, depression-related brain regions associates with resilience and susceptibility to chronic stress is largely unknown. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine FC between established depression-related regions in susceptible (SUS) and resilient (RES) adult mice following chronic social defeat stress (CSDS). Seed-seed FC analysis revealed that the ventral dentate gyrus (vDG) exhibited the greatest number of FC group differences with other stress-related limbic brain regions. SUS mice showed greater FC between the vDG and subcortical regions compared to both control (CON) or RES groups. Whole brain vDG seed-voxel analysis supported seed-seed findings in SUS mice but also indicated significantly decreased FC between the vDG and anterior cingulate area compared to CON mice. Interestingly, RES mice exhibited enhanced FC between the vDG and anterior cingulate area compared to SUS mice. Moreover, RES mice showed greater FC between the infralimbic prefrontal cortex and the nucleus accumbens shell compared to CON mice. These findings indicate unique differences in FC patterns in phenotypically distinct SUS and RES mice that could represent a neurobiological basis for depression, anxiety, and negative-coping behaviors that are associated with exposure to chronic stress.
Role of pancreatic lipase inhibition in obesity treatment: mechanisms and challenges towards current insights and future directions
The worldwide health emergency of obesity is closely connected to how dietary fats are metabolized, whereas the process is significantly influenced by pancreatic lipase (PL), an enzyme critical for lipid hydrolysis into fatty acids. This narrative review employs a methodological approach utilizing literature searches of PubMed data up to March 2024. The search term criteria encompasses keywords related to the role, mechanism, challenges, and current and future treatments of pancreatic lipase in obesity with an overall references is 106. This paper offers a comprehensive explanation of the role of PL, underlining its significance in the digestive process and lipid imbalances that contribute to obesity and by extension, its impact on obesity development and progression. Additionally, it delves into the dual functionality of the pancreas, emphasizing its impact on metabolism and energy utilization which, when dysregulated, promotes obesity. A focal point of this review is the investigation into the efficacy, challenges, and adverse effects of current pancreatic lipase inhibitors, with orlistat being highlighted as a primary current drug delivery. By discussing advanced obesity treatments, including the exploration of novel anti-obesity medications that target specific biological pathways, this review underscores the complexity of obesity treatment and the necessity for a multifaceted approach. In conclusion, this paper emphasizing the importance of understanding the role of enzymes like pancreatic lipase mechanistic and adopting a multidisciplinary approach to treatment and side effects of current obesity drugs and explore new emerging therapeutic strategies for more effective obesity management.
Responses