Related Articles

ToF-SIMS sputter depth profiling of interphases and coatings on lithium metal surfaces

Lithium metal as a negative electrode material offers ten times the specific capacity of graphitic electrodes, but its rechargeable operation poses challenges like excessive and continuous interphase formation, high surface area lithium deposits and safety issues. Improving the lithium | electrolyte interface and interphase requires powerful surface analysis techniques, such as ToF-SIMS sputter depth profiling.This study investigates lithium metal sections with an SEI layer by ToF-SIMS using different sputter ions. An optimal sputter ion is chosen based on the measured ToF-SIMS sputter depth profiles and SEM analysis of the surface damage. Further, this method is adapted to lithium metal foil with an intermetallic coating. ToF-SIMS sputter depth profiles in both polarities provide comprehensive insights into the coating structure. Both investigations highlight the value of ToF-SIMS sputter depth profiling in lithium metal battery research and offer guidance for future studies.

Low-carbon ammonia production is essential for resilient and sustainable agriculture

Ammonia-based synthetic nitrogen fertilizers (N fertilizers) are critical for global food security. However, their production, primarily dependent on fossil fuels, is energy- and carbon-intensive and vulnerable to supply chain disruptions, affecting 1.8 billion people reliant on either imported fertilizers or natural gas. Here we examine the global N-fertilizer supply chain and analyse context-specific trade-offs of low-carbon ammonia production pathways. Carbon capture and storage can reduce overall emissions by up to 70%, but still relies on natural gas. Electrolytic and biochemical processes minimize emissions but are 2–3 times more expensive and require 100–300 times more land and water than the business-as-usual production. Decentralized production has the potential to reduce transportation costs, emissions, reliance on imports and price volatility, increasing agricultural productivity in the global south, but requires policy support. Interdisciplinary approaches are essential to understand these trade-offs and find resilient ways to feed a growing population while minimizing climate impacts.

The evolution of lithium-ion battery recycling

Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.

Anion vacancies activate N2 to ammonia on Ba–Si orthosilicate oxynitride-hydride

Anion vacancies on metal oxide surfaces have been studied as either active sites or promoting sites in various chemical reactions involving oxidation/reduction processes. However, oxide materials rarely work effectively as catalysts in the absence of transition metal sites. Here we report a Ba–Si orthosilicate oxynitride–hydride as a transition-metal-free catalyst for efficient ammonia synthesis via an anion-vacancymediated mechanism. The facile desorption of H and N3− anions plus the flexibility of the crystal structure can accommodate a high density of electrons at vacancy sites, where N2 can be captured and directly activated to ammonia through hydrogenation processes. The ammonia synthesis rates reach 40.1 mmol g−1 h−1 at 300 °C by loading ruthenium nanoparticles. Although not found to dissociate N2, Ru instead facilitates the formation of anion vacancies at the Ru–support interface. This demonstrates a new route for anion-vacancymediated heterogeneous catalysis.

Responses

Your email address will not be published. Required fields are marked *