Related Articles
The evolution of lithium-ion battery recycling
Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.
Direct observation of Mn-ion dissolution from LiMn2O4 lithium battery cathode to electrolyte
The degradation of lithium-ion batteries has become a concerning issue. One problem is metal ion dissolution from the cathode material, such as Mn2+ dissolution from spinel-type LiMn2O4 (LMO). However, direct observation of the dissolution process has yet to be reported. Here, we establish in-situ 1H nuclear magnetic resonance imaging (MRI) measurement as an efficient technique to observe Mn2+ dissolution from a model lithium battery with LMO as the cathode. We observe an increase in the MRI signal intensity near the cathode, confirming the dissolution of Mn2+ from the cathode to the electrolyte. Moreover, we show that Mn2+ dissolution from LMO can be suppressed using an appropriate choice of electrolytes. We believe the method developed here can answer the long-time unanswered question of when, where, and how the metal ion dissolution occurs in the lithium-ion battery electrode and can be extended to other electrochemical systems.
Revealing the molecular interplay of coverage, wettability, and capacitive response at the Pt(111)-water solution interface under bias
While electrified interfaces are crucial for electrocatalysis and corrosion, their molecular morphology remains largely unknown. Through highly realistic ab initio molecular dynamics simulations of the Pt(111)-water solution interface in reducing conditions, we reveal a deep interconnection among electrode coverage, wettability, capacitive response, and catalytic activity. We identify computationally the experimentally hypothesised states for adsorbed hydrogen on Pt, HUPD and HOPD, revealing their role in governing interfacial water reorientation and hydrogen evolution. The transition between these two H states with increasing potential, induces a shift from a hydrophobic to a hydrophilic interface and correlates with a change in the primary electrode screening mechanism. This results in a slope change in differential capacitance, marking the onset of the experimentally observed peak around the potential of zero charge. Our work produces crucial insights for advancing electrocatalytic energy conversion, developing deep understanding of electrified interfaces.
Improving lithium-sulfur battery performance using a polysaccharide binder derived from red algae
Li-S batteries are a promising energy storage technology due to their high theoretical capacity, but they suffer from issues such as poor cycle stability and capacity loss over time. Here, we investigate the impact of carrageenan, a polysaccharide binder derived from red algae, on the performance of Li-S batteries. Electrode slurries are prepared without the toxic solvent N-methyl-2-pyrrolidone, using only water as a solvent and dispersant, making the process potentially scalable and cost-effective. With the optimal amount of carrageenan, we observe a capacity retention of 69.1% at 4 C after 1000 charge-discharge cycles. Carrageenan-based electrodes deliver 30% higher capacity than those made with the industry-standard polyvinylidene fluoride binder. X-ray photoelectron spectroscopy analysis confirms the chemical binding of carrageenan to the sulfur active material, and transmission X-ray absorption spectroscopy reveals that carrageenan effectively traps shorter-chain lithium polysulfides, improving the overall battery performance.
Advanced electrode processing for lithium-ion battery manufacturing
Lithium-ion batteries (LIBs) need to be manufactured at speed and scale for their use in electric vehicles and devices. However, LIB electrode manufacturing via conventional wet slurry processing is energy-intensive and costly, challenging the goal to achieve sustainable, affordable and facile manufacturing of high-performance LIBs. In this Review, we discuss advanced electrode processing routes (dry processing, radiation curing processing, advanced wet processing and 3D-printing processing) that could reduce energy usage and material waste. Maxwell-type dry processing is a scalable alternative to conventional processing and has relatively low manufacturing cost and energy consumption. Radiation curing processing could enable high-throughput manufacturing, but binder selection is limited to certain radiation curable chemistries. 3D-printing processing can produce electrodes with diverse architectures and improved rate performance, but scalability is yet to be demonstrated. 3D-printing processing is good for special applications where throughput and cost can be compromised for performance.
Responses