Related Articles

Dopamine in the tail of the striatum facilitates avoidance in threat–reward conflicts

Responding appropriately to potential threats before they materialize is critical to avoiding disastrous outcomes. Here we examine how threat-coping behavior is regulated by the tail of the striatum (TS) and its dopamine input. Mice were presented with a potential threat (a moving object) while pursuing rewards. Initially, the mice failed to obtain rewards but gradually improved in later trials. We found that dopamine in TS promoted avoidance of the threat, even at the expense of reward acquisition. Furthermore, the activity of dopamine D1 receptor-expressing neurons promoted threat avoidance and prediction. In contrast, D2 neurons suppressed threat avoidance and facilitated overcoming the potential threat. Dopamine axon activation in TS not only potentiated the responses of dopamine D1 receptor-expressing neurons to novel sensory stimuli but also boosted them acutely. These results demonstrate that an opponent interaction of D1 and D2 neurons in the TS, modulated by dopamine, dynamically regulates avoidance and overcoming potential threats.

Intersect between brain mechanisms of conditioned threat, active avoidance, and reward

Active avoidance is a core behavior for human coping, and its excess is common across psychiatric diseases. The decision to actively avoid a threat is influenced by cost and reward. Yet, threat, avoidance, and reward have been studied in silos. We discuss behavioral and brain circuits of active avoidance and the interactions with fear and threat. In addition, we present a neural toggle switch model enabling fear-to-anxiety transition and approaching reward vs. avoiding harm decision. To fully comprehend how threat, active avoidance, and reward intersect, it is paramount to develop one shared experimental approach across phenomena and behaviors, which will ultimately allow us to better understand human behavior and pathology.

The transcriptomic architecture of common cancers reflects synthetic lethal interactions

To maintain cell fitness, deleterious genetic alterations are buffered by compensatory changes in additional genes. In cancer, buffering processes could be targeted by synthetic lethality. However, despite the large-scale identification of synthetic lethal effects in preclinical models, evidence that these operate clinically is limited. This impedes the application of synthetic lethal approaches. By integrating molecular profiling data from >9,000 cancers with synthetic lethal screens, we show that transcriptomic buffering of tumor suppressor gene (TSG) loss by hyperexpression of synthetic lethal partners is a common phenomenon, extending to multiple TSGs and histotypes. Transcriptomic buffering is also notable in cancers that phenocopy TSG loss, such as BRCAness cancers, where expression of BRCA1/2 synthetic lethal genes correlates with clinical outcome. Synthetic lethal genes that exhibit transcriptomic buffering also represent more robust synthetic lethal effects. These observations have implications for understanding how tumor cells tolerate TSG loss, in part explain transcriptomic architectures in cancer and provide insight into target selection.

The dual role of PGAM5 in inflammation

In recent years, the focus on human inflammation in research has increased, with aging-related inflammation widely recognized as a defining characteristic of aging. Inflammation is strongly correlated with mitochondrial dysfunction. Phosphoglycerate mutase family member 5 (PGAM5) is a novel modulator of mitochondrial homeostasis in response to mechanical stimulation. Here we review the structure and sublocalization of PGAM5, introduce its importance in programmed cell death and summarize its crucial roles in the development and progression of inflammatory diseases such as pneumonia, hepatitis, neuroinflammation and aging. Notably, PGAM5 has dual effects on controlling inflammation: distinct PGAM5-mediated mitochondrial functions exhibit cellular heterogeneity, leading to its dual functions in inflammation control. We therefore highlight the double-edged sword nature of PGAM5 as a potential critical regulator and innovative therapeutic target in inflammation. Finally, the challenges and future directions of the use of PGAM5, which has dual properties, as a target molecule in the clinic are discussed. This review provides crucial insights to guide the development of intelligent therapeutic strategies targeting PGAM5-specific regulation to treat intractable inflammatory conditions, as well as the potential extension of its broader application to other diseases to achieve more precise and effective treatment outcomes.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Responses

Your email address will not be published. Required fields are marked *