Related Articles

Catalytic dwell oscillations complete the F1-ATPase mechanism

The F1-ATPase molecular motor rotates subunit-γ in 120° power strokes within its ring of three catalytic sites separated by catalytic dwells for ATP hydrolysis and Pi release. By monitoring rotary position of subunit-γ in E. coli F1 every 5 μs, we resolved Stage-1 catalytic dwell oscillations that extend from -13° to 13° centered at 0° consistent with F1 structures containing transition state inhibitors, which decay by a first order process consistent with ATP hydrolysis. During Stage-2, 80% of the oscillations extend from 3° and 25° centered at 14°, while 20% are centered at 33° and can extend to 27°–44° comparable to the ATP binding position. Remarkably, in Stage-3 subunit-γ returns to 0° to end the catalytic dwell, which keeps the start of power strokes in phase for consecutive rotational events. These newly observed states fit with F1 structures that were inconsistent with the canonical mechanism, and indicate that catalytic dwell oscillations must persist until the correct occupancy of substrates and products occurs at all three catalytic sites. When that condition is met, F1 can proceed to the next power stroke. Understanding the basis of these catalytic dwell oscillations completes the F1-ATPase rotary mechanism.

Sustainable supply chain management practices and performance: The moderating effect of stakeholder pressure

Currently, sustainable supply chain management practices have become an important strategy for firms to improve performance and gain competitive advantage. However, there is a current debate over the performance outcomes of sustainable supply chain management practices. Additionally, the role of stakeholder pressure is frequently overlooked. Drawing on Natural Resources-Based View and Stakeholder Theory, this study aims to elucidate the ambiguous connection between sustainable supply management, sustainable process management, stakeholder pressure and performance, and investigate the mediation role of sustainable process management and the moderation effect of stakeholder pressure. Our analysis, based on data collected from 235 Chinese manufacturing firms, reveals significant insights. First, stakeholder pressure positively moderates the relationship between sustainable process management and performance, while negatively moderates the relationship between sustainable supply management and performance. Second, sustainable process management has a complete mediation effect on the relationship between sustainable supply management and performance. The conclusion not only explains the inconsistent relationship between sustainable supply chain management practice and performance, but also reveals clearly the relationship between sustainable supply management and sustainable process management. Besides, it also highlights the difference in performance outcomes of sustainable supply management and sustainable process management under stakeholder pressures, and has valuable guidance to the practice of sustainable supply chain management in Chinese manufacturing firms.

Intelligent shipping: integrating autonomous maneuvering and maritime knowledge in the Singapore-Rotterdam Corridor

Designing safe and reliable routes is the core of intelligent shipping. However, existing methods for industrial use are inadequate, primarily due to the lack of considering company preferences and ship maneuvering characteristics. To address these challenges, here we introduce a methodological framework that integrates maritime knowledge and autonomous maneuvering model. Based on historical maritime big data, the framework offers customized routes for companies with specific routing preferences. The autonomous maneuvering model then evaluates the safety and reliability of the routes by considering ship motion characteristics and ocean hydrodynamics. We validate its effectiveness on the world’s longest Green and Digital Shipping Corridor between Singapore and Rotterdam. Results demonstrate that our model can provide customized route design for companies and enhance safety for shipping. The framework could serve as a fundamental structure to build a fully digitalized platform for route customization and evaluation for global shipping, optimizing operational decision-making and safety assurance.

Human neural dynamics of real-world and imagined navigation

The ability to form episodic memories and later imagine them is integral to the human experience, influencing our recollection of the past and envisioning of the future. While rodent studies suggest the medial temporal lobe, especially the hippocampus, is involved in these functions, its role in human imagination remains uncertain. In human participants, imaginations can be explicitly instructed and reported. Here we investigate hippocampal theta oscillations during real-world and imagined navigation using motion capture and intracranial electroencephalographic recordings from individuals with chronically implanted medial temporal lobe electrodes. Our results revealed intermittent theta dynamics, particularly within the hippocampus, encoding spatial information and partitioning navigational routes into linear segments during real-world navigation. During imagined navigation, theta dynamics exhibited similar patterns despite the absence of external cues. A statistical model successfully reconstructed real-world and imagined positions, providing insights into the neural mechanisms underlying human navigation and imagination, with implications for understanding memory in real-world settings.

Crystal structures of monomeric BsmI restriction endonuclease reveal coordinated sequential cleavage of two DNA strands

BsmI, a thermophilic Type IIS restriction endonuclease from Bacillus stearothermophilus, presents a unique structural composition, housing two distinct active sites within a single monomer. Recognition of the non-symmetrical 5’-GAATGC-3’ sequence enables precise cleavage of the top and bottom DNA strands. Synthetic biology interventions have led to the transformation of BsmI into Nb.BsmI, a nicking endonuclease. Here we introduce Nt*.BsmI, tailored for top-strand cleavage, which is inactive on standard double-stranded DNA, but active on bottom-strand nicked DNA, suggesting a sequential cleavage mechanism. Crystallographic structures of pre- and post-reactive complexes with cognate DNA show one major conformational change, a retractable loop possibly governing sequential active site accessibility. The x-ray structures reveal the position of the divalent metal ions in the active sites and the DNA:protein interactions, while the models predicted by Alphafold3 are incorrect. This comprehensive structural and functional study lays a foundation for rational enzyme redesign and potential applications in biotechnology.

Responses

Your email address will not be published. Required fields are marked *