Related Articles
Innovating beyond electrophysiology through multimodal neural interfaces
Neural circuits distributed across different brain regions mediate how neural information is processed and integrated, resulting in complex cognitive capabilities and behaviour. To understand dynamics and interactions of neural circuits, it is crucial to capture the complete spectrum of neural activity, ranging from the fast action potentials of individual neurons to the population dynamics driven by slow brain-wide oscillations. In this Review, we discuss how advances in electrical and optical recording technologies, coupled with the emergence of machine learning methodologies, present a unique opportunity to unravel the complex dynamics of the brain. Although great progress has been made in both electrical and optical neural recording technologies, these alone fail to provide a comprehensive picture of the neuronal activity with high spatiotemporal resolution. To address this challenge, multimodal experiments integrating the complementary advantages of different techniques hold great promise. However, they are still hindered by the absence of multimodal data analysis methods capable of providing unified and interpretable explanations of the complex neural dynamics distinctly encoded in these modalities. Combining multimodal studies with advanced data analysis methods will offer novel perspectives to address unresolved questions in basic neuroscience and to develop treatments for various neurological disorders.
An integrative data-driven model simulating C. elegans brain, body and environment interactions
The behavior of an organism is influenced by the complex interplay between its brain, body and environment. Existing data-driven models focus on either the brain or the body–environment. Here we present BAAIWorm, an integrative data-driven model of Caenorhabditis elegans, which consists of two submodels: the brain model and the body–environment model. The brain model was built by multicompartment models with realistic morphology, connectome and neural population dynamics based on experimental data. Simultaneously, the body–environment model used a lifelike body and a three-dimensional physical environment. Through the closed-loop interaction between the two submodels, BAAIWorm reproduced the realistic zigzag movement toward attractors observed in C. elegans. Leveraging this model, we investigated the impact of neural system structure on both neural activities and behaviors. Consequently, BAAIWorm can enhance our understanding of how the brain controls the body to interact with its surrounding environment.
Latent circuit inference from heterogeneous neural responses during cognitive tasks
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity and task variables leave unknown how heterogeneous responses arise from connectivity to drive behavior. We develop the latent circuit model, a dimensionality reduction approach in which task variables interact via low-dimensional recurrent connectivity to produce behavioral output. We apply the latent circuit inference to recurrent neural networks trained to perform a context-dependent decision-making task and find a suppression mechanism in which contextual representations inhibit irrelevant sensory responses. We validate this mechanism by confirming the behavioral effects of patterned connectivity perturbations predicted by the latent circuit model. We find similar suppression of irrelevant sensory responses in the prefrontal cortex of monkeys performing the same task. We show that incorporating causal interactions among task variables is critical for identifying behaviorally relevant computations from neural response data.
MARBLE: interpretable representations of neural population dynamics using geometric deep learning
The dynamics of neuron populations commonly evolve on low-dimensional manifolds. Thus, we need methods that learn the dynamical processes over neural manifolds to infer interpretable and consistent latent representations. We introduce a representation learning method, MARBLE, which decomposes on-manifold dynamics into local flow fields and maps them into a common latent space using unsupervised geometric deep learning. In simulated nonlinear dynamical systems, recurrent neural networks and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations that parametrize high-dimensional neural dynamics during gain modulation, decision-making and changes in the internal state. These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations. Extensive benchmarking demonstrates state-of-the-art within- and across-animal decoding accuracy of MARBLE compared to current representation learning approaches, with minimal user input. Our results suggest that a manifold structure provides a powerful inductive bias to develop decoding algorithms and assimilate data across experiments.
Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free Bi0.5Na0.5TiO3 is gaining importance in showing an alternative to lead-based devices. Here we show that (1-x)Bi0.5Na0.5TiO3 – xBaZryTi1-yO3 (best: 0.94Bi0.5Na0.5TiO3 -0.06BaZr0.4Ti0.6O3) shows an increase of recoverable energy density and electric breakdown upon chemical substitution. In thin films derived from Chemical Solution Deposition, we observed that polarization peaks at the morphotropic phase boundary at x = 0.06. While Zr substitution results in reduced polarization, it enhances both efficiency and electric breakdown strength, ultimately doubling the recoverable energy density and the metallization interface by lowering surface roughness. Our dielectric capacitor shows <3% deviation of energy properties over 106 cycles. A virtual device model of a multilayer thin film capacitor (7.25 mJ recoverable energy) was used to compare its performance to already in use multilayer ceramic capacitors.
Responses