Related Articles

Twist–torsion coupling in beating axonemes

Motile cilia and flagella produce regular bending waves that enable single-cell navigation due to non-planar waveforms with characteristic torsion. However, it is not known how torsion, a geometric property of the three-dimensional waveform, relates to mechanical twist deformations of the axoneme, the conserved cytoskeletal core of cilia and flagella. Here we show that axoneme twisting and torsion are coupled and that twist waves propagate along the beating axoneme of Chlamydomonas reinhardtii algae. We resolve the three-dimensional shapes of the axonemal waveform with nanometre precision at millisecond timescales using defocused dark-field microscopy and beat-cycle averaging, observing regular hetero-chiral torsion waves propagating base to tip. To investigate whether the observed torsion results from axonemal twist, we attach gold nanoparticles to axonemes and measure their cross-section rotation during beating. We find that, locally, the axonemal cross-section co-rotates with the bending plane, evidencing twist–torsion coupling. Our results demonstrate the link between shape and mechanical deformation in beating axonemes and can inform models of the dynamics of motor proteins inside the axoneme responsible for shaping the beat of motile cilia.

MADS31 supports female germline development by repressing the post-fertilization programme in cereal ovules

The female germline of flowering plants develops within a niche of sporophytic (somatic) ovule cells, also referred to as the nucellus. How niche cells maintain their own somatic developmental programme, yet support the development of adjoining germline cells, remains largely unknown. Here we report that MADS31, a conserved MADS-box transcription factor from the B-sister subclass, is a potent regulator of niche cell identity. In barley, MADS31 is preferentially expressed in nucellar cells directly adjoining the germline, and loss-of-function mads31 mutants exhibit deformed and disorganized nucellar cells, leading to impaired germline development and partial female sterility. Remarkably similar phenotypes are observed in mads31 mutants in wheat, suggesting functional conservation within the Triticeae tribe. Molecular assays indicate that MADS31 encodes a potent transcriptional repressor, targeting genes in the ovule that are normally active in the seed. One prominent target of MADS31 is NRPD4b, a seed-expressed component of RNA polymerase IV/V that is involved in epigenetic regulation. NRPD4b is directly repressed by MADS31 in vivo and is derepressed in mads31 ovules, while overexpression of NRPD4b recapitulates the mads31 ovule phenotype. Thus, repression of NRPD4b by MADS31 is required to maintain ovule niche functionality. Our findings reveal a new mechanism by which somatic ovule tissues maintain their identity and support germline development before transitioning to the post-fertilization programme.

Power price stability and the insurance value of renewable technologies

To understand if renewables stabilize or destabilize electricity prices, we simulate European power markets as projected by the National Energy and Climate Plans for 2030 but replicating the historical variability in electricity demand, the prices of fossil fuels and weather. We propose a β-sensitivity metric, defined as the projected increase in the average annual price of electricity when the price of natural gas increases by 1 euro. We show that annual power prices spikes would be more moderate because the β-sensitivity would fall from 1.4 euros to 1 euro. Deployment of solar photovoltaic and wind technologies exceeding 30% of the 2030 target would lower it further, below 0.5 euros. Our framework shows that this stabilization of prices would produce social welfare gains, that is, we find an insurance value of renewables. Because market mechanisms do not internalize this value, we argue that it should be explicitly considered in energy policy decisions.

Coupling of cell shape, matrix and tissue dynamics ensures embryonic patterning robustness

Tissue patterning coordinates morphogenesis, cell dynamics and fate specification. Understanding how precision in patterning is robustly achieved despite inherent developmental variability during mammalian embryogenesis remains a challenge. Here, based on cell dynamics quantification and simulation, we show how salt-and-pepper epiblast and primitive endoderm (PrE) cells pattern the inner cell mass of mouse blastocysts. Coupling cell fate and dynamics, PrE cells form apical polarity-dependent actin protrusions required for RAC1-dependent migration towards the surface of the fluid cavity, where PrE cells are trapped due to decreased tension. Concomitantly, PrE cells deposit an extracellular matrix gradient, presumably breaking the tissue-level symmetry and collectively guiding their own migration. Tissue size perturbations of mouse embryos and their comparison with monkey and human blastocysts further demonstrate that the fixed proportion of PrE/epiblast cells is optimal with respect to embryo size and tissue geometry and, despite variability, ensures patterning robustness during early mammalian development.

Crop rotation increases Tibetan barley yield and soil quality on the Tibetan Plateau

Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality. We conducted 39 field experiments on the Tibetan Plateau, comparing short-term (≤5 years), 5–10 years and long-term (≥10 years) continuous cropping with rotation of Tibetan barley with wheat or rape. Results showed that Tibetan barley–wheat and Tibetan barley–rape rotations increased yields by 17% and 12%, respectively, while improving the soil quality index by 11% and 21%, compared with long-term continuous cropping. Both Tibetan barley rotations with wheat and rape improved soil quality and consequently yield, mainly by increasing soil microbial biomass nitrogen and microbial biomass carbon and decreasing pH. By contrast, long-term continuous cropping led to decreased soil organic matter, lower microbial biomass nitrogen and increased pH, contributing to yield decline. The benefits of rotations on crop yield and soil quality increased over time. Implementing crop rotation with wheat or rape thus offers a sustainable agricultural strategy for improving food security on the Tibetan Plateau.

Responses

Your email address will not be published. Required fields are marked *