Related Articles

Self-reports map the landscape of task states derived from brain imaging

Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a ‘state-space’ that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.

Preserving and combining knowledge in robotic lifelong reinforcement learning

Humans can continually accumulate knowledge and develop increasingly complex behaviours and skills throughout their lives, which is a capability known as ‘lifelong learning’. Although this lifelong learning capability is considered an essential mechanism that makes up general intelligence, recent advancements in artificial intelligence predominantly excel in narrow, specialized domains and generally lack this lifelong learning capability. Here we introduce a robotic lifelong reinforcement learning framework that addresses this gap by developing a knowledge space inspired by the Bayesian non-parametric domain. In addition, we enhance the agent’s semantic understanding of tasks by integrating language embeddings into the framework. Our proposed embodied agent can consistently accumulate knowledge from a continuous stream of one-time feeding tasks. Furthermore, our agent can tackle challenging real-world long-horizon tasks by combining and reapplying its acquired knowledge from the original tasks stream. The proposed framework advances our understanding of the robotic lifelong learning process and may inspire the development of more broadly applicable intelligence.

Emotions and individual differences shape human foraging under threat

A common behavior in natural environments is foraging for rewards. However, this is often in the presence of predators. Therefore, one of the most fundamental decisions for humans, as for other animals, is how to apportion time between reward-motivated pursuit behavior and threat-motivated checking behavior. To understand what affects how people strike this balance, we developed an ecologically inspired task and looked at both within-participant dynamics (moods) and between-participant individual differences (questionnaires about real-life behaviors) in two large internet samples (n = 374 and n = 702) in a cross-sectional design. For the within-participant dynamics, we found that people regulate task-evoked stress homeostatically by changing behavior (increasing foraging and hiding). Individual differences, even in superficially related traits (apathy–anhedonia and anxiety–compulsive checking) reliably mapped onto unique behaviors. Worse task performance, due to maladaptive checking, was linked to gender (women checked excessively) and specific anxiety-related traits: somatic anxiety (reduced self-reported checking due to worry) and compulsivity (self-reported disorganized checking). While anhedonia decreased self-reported task engagement, apathy, strikingly, improved overall task performance by reducing excessive checking. In summary, we provide a multifaceted paradigm for assessment of checking for threat in a naturalistic task that is sensitive to both moods as they change throughout the task and clinical dimensions. Thus, it could serve as an objective measurement tool for future clinical studies interested in threat, vigilance or behavior–emotion interactions in contexts requiring both reward seeking and threat avoidance.

Predictive learning as the basis of the testing effect

A prominent learning phenomenon is the testing effect, meaning that testing enhances retention more than studying. Emergent frameworks propose fundamental (Hebbian and predictive) learning principles as its basis. Predictive learning posits that learning occurs based on the contrast (error) between a prediction and the feedback on that prediction (prediction error). Here, we propose that in testing (but not studying) scenarios, participants predict potential answers, and its contrast with the subsequent feedback yields a prediction error, which facilitates testing-based learning. To investigate this, we developed an associative memory network incorporating Hebbian and/or predictive learning, together with an experimental design where human participants studied or tested English-Swahili word pairs followed by recognition. Three behavioral experiments (N = 80, 81, 62) showed robust testing effects when feedback was provided. Model fitting (of 10 different models) suggested that only models incorporating predictive learning can account for the breadth of data associated with the testing effect. Our data and model suggest that predictive learning underlies the testing effect.

Two types of motifs enhance human recall and generalization of long sequences

Whether it is listening to a piece of music, learning a new language, or solving a mathematical equation, people often acquire abstract notions in the sense of motifs and variables—manifested in musical themes, grammatical categories, or mathematical symbols. How do we create abstract representations of sequences? Are these abstract representations useful for memory recall? In addition to learning transition probabilities, chunking, and tracking ordinal positions, we propose that humans also use abstractions to arrive at efficient representations of sequences. We propose and study two abstraction categories: projectional motifs and variable motifs. Projectional motifs find a common theme underlying distinct sequence instances. Variable motifs contain symbols representing sequence entities that can change. In two sequence recall experiments, we train participants to remember sequences with projectional and variable motifs, respectively, and examine whether motif training benefits the recall of novel sequences sharing the same motif. Our result suggests that training projectional and variables motifs improve transfer recall accuracy, relative to control groups. We show that a model that chunks sequences in an abstract motif space may learn and transfer more efficiently, compared to models that learn chunks or associations on a superficial level. Our study suggests that humans construct efficient sequential memory representations according to the two types of abstraction we propose, and creating these abstractions benefits learning and out-of-distribution generalization. Our study paves the way for a deeper understanding of human abstraction learning and generalization.

Responses

Your email address will not be published. Required fields are marked *