Related Articles
An Integrative lifecycle design approach based on carbon intensity for renewable-battery-consumer energy systems
Driven by sustainable development goals and carbon neutrality worldwide, demands for both renewable energy and storage systems are constantly increasing. However, the lack of an appropriate approach without considering renewable intermittence and demand stochasticity will lead to capacity oversizing or undersizing. In this study, an optimal design approach is proposed for integrated photovoltaic-battery-consumer energy systems in the form of a m2-kWp-kWh relationship in both centralized and distributed formats. Superiorities of the proposed matching degree approach are compared with the traditional uniformity approach, in photovoltaic capacity, battery capacity, net present value and lifecycle carbon intensity. Results showed that the proposed method is superior to the traditional approach with higher net present value and lower carbon intensity. Furthermore, the proposed method can be scaled and applied to guide the design of photovoltaic-battery-consumer energy systems in different climate zones, promoting sustainable development and carbon neutrality globally.
Escalation of caldera unrest indicated by increasing emission of isotopically light sulfur
Calderas are depressions formed by some of the largest volcanic eruptions. Their long-lived inter-eruptive periods are occasionally interrupted by phases of unrest, in which escalating seismicity, ground deformation and gas emissions raise concerns of potential volcano reawakening. However, interpretation of such physico-chemical signals is complicated by few examples of monitored unrest that culminated into eruption and by our fragmentary understanding of the drivers and timescales of caldera reactivation. Here we show that multi-decadal gas observations at the restless Campi Flegrei caldera in Italy record an unprecedented increase in isotopically light sulfur release from fumaroles since 2018. We then use hydrothermal gas equilibria and numerical simulations of magmatic degassing to propose that such a change in sulfur emissions results from decompression-driven degassing of mafic magma at ≥6 km depth, along with some extent of sulfur remobilization from hydrothermal minerals. Examination of a global dataset indicates that, despite the diversity in eruptive behaviour and tectonic setting, increasing sulfur output may be a common process during unrest escalation at calderas generally. Hence, our observations and models of sulfur behaviour may inform interpretations of unrest and hazard assessment at reawakening calderas and hydrothermal active volcanoes worldwide.
A combination of measures limits demand for critical materials in Sweden’s electric car transition
Electrification of passenger cars will result in an increased demand for critical raw materials. Here we estimate the quantities of nickel, manganese, cobalt, lithium, and graphite that could be required for a transition to electric cars in Sweden and how different measures can limit material demand. We find notable reduction potentials for shorter battery range—enabled by improved charging infrastructure, increased vehicle energy efficiency, and reduced travel demand compared to a reference scenario. The reduction potentials for downsizing and more lightweight cars, and car sharing are more modest. The combined impact of these measures would be 50–75% reduction in cumulative demand and 72–87% reduction in in-use stock in 2050, depending on the material and battery chemistry pathway. Generally, the reduction potentials are larger than the potential contributions from recycling, suggesting that these complementary measures may be more effective in reducing material demand.
Improving lithium-sulfur battery performance using a polysaccharide binder derived from red algae
Li-S batteries are a promising energy storage technology due to their high theoretical capacity, but they suffer from issues such as poor cycle stability and capacity loss over time. Here, we investigate the impact of carrageenan, a polysaccharide binder derived from red algae, on the performance of Li-S batteries. Electrode slurries are prepared without the toxic solvent N-methyl-2-pyrrolidone, using only water as a solvent and dispersant, making the process potentially scalable and cost-effective. With the optimal amount of carrageenan, we observe a capacity retention of 69.1% at 4 C after 1000 charge-discharge cycles. Carrageenan-based electrodes deliver 30% higher capacity than those made with the industry-standard polyvinylidene fluoride binder. X-ray photoelectron spectroscopy analysis confirms the chemical binding of carrageenan to the sulfur active material, and transmission X-ray absorption spectroscopy reveals that carrageenan effectively traps shorter-chain lithium polysulfides, improving the overall battery performance.
The evolution of lithium-ion battery recycling
Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.
Responses