Related Articles

Rising greenhouse gas emissions embodied in the global bioeconomy supply chain

The bioeconomy is key to meeting climate targets. Here, we examine greenhouse gas emissions in the global bioeconomy supply chain (1995–2022) using advanced multi-regional input-output analysis and a global land-use change model. Considering agriculture, forestry, land use, and energy, we assess the carbon footprint of biomass production and examine its end-use by provisioning systems. The footprint increased by 3.3 Gt CO2-eq, with 80% driven by international trade, mainly beef and biochemicals (biofuels, bioplastics, rubber). Biochemicals showed the largest relative increase, doubling due to tropical land-use change (feedstock cultivation) and China’s energy-intensive processing. Food from retail contributes most to the total biomass carbon footprint, while food from restaurants and canteens account for >50% of carbon-footprint growth, with three times higher carbon intensity than retail. Our findings emphasize the need for sustainable sourcing strategies and that adopting renewables and halting land-use change could reduce the bioeconomy carbon footprint by almost 60%.

Low-carbon ammonia production is essential for resilient and sustainable agriculture

Ammonia-based synthetic nitrogen fertilizers (N fertilizers) are critical for global food security. However, their production, primarily dependent on fossil fuels, is energy- and carbon-intensive and vulnerable to supply chain disruptions, affecting 1.8 billion people reliant on either imported fertilizers or natural gas. Here we examine the global N-fertilizer supply chain and analyse context-specific trade-offs of low-carbon ammonia production pathways. Carbon capture and storage can reduce overall emissions by up to 70%, but still relies on natural gas. Electrolytic and biochemical processes minimize emissions but are 2–3 times more expensive and require 100–300 times more land and water than the business-as-usual production. Decentralized production has the potential to reduce transportation costs, emissions, reliance on imports and price volatility, increasing agricultural productivity in the global south, but requires policy support. Interdisciplinary approaches are essential to understand these trade-offs and find resilient ways to feed a growing population while minimizing climate impacts.

Full recovery of brines at normal temperature with process-heat-supplied coupled air-carried evaporating separation (ACES) cycle

Conventional air-carried evaporating separation (ACES) technology, to achieve complete separation and recovery of water and salt in brine, tends to necessitate heating air above a critical temperature (typically>90 °C). In this paper, a novel concept of process-heat-supplied and an ACES cycle with this technique is proposed. A comprehensive thermodynamic analytical investigation is conducted. The results indicate that at heat source supply temperature Tsupply of only 45.17 °C, this novel unit is capable of achieving complete separation of water and salt from 5 wt% concentration brine. Meanwhile, thermodynamic mechanism analysis reveals that sufficient process-heat-supplied affords the fluid self-adaptive regulation on the driving potential of heat and mass transfer, thus circumventing traditional heat and mass transfer limitation. Additionally, a solar ACES system with process-heat-supplied incorporating heat pump is further proposed. For this system, theoretical evaporation rate for unit area of solar irradiation me-solar = 2.23 kg/(m2·h), integrated solar utilization efficiency ηi = 188%; while considering overall losses me-solar = 1.41 kg/(m2·h), ηi = 95.2%.

Responses

Your email address will not be published. Required fields are marked *