Related Articles
The evolution of lithium-ion battery recycling
Demand for lithium-ion batteries (LIBs) is increasing owing to the expanding use of electrical vehicles and stationary energy storage. Efficient and closed-loop battery recycling strategies are therefore needed, which will require recovering materials from spent LIBs and reintegrating them into new batteries. In this Review, we outline the current state of LIB recycling, evaluating industrial and developing technologies. Among industrial technologies, pyrometallurgy can be broadly applied to diverse electrode materials but requires operating temperatures of over 1,000 °C and therefore has high energy consumption. Hydrometallurgy can be performed at temperatures below 200 °C and has material recovery rates of up to 93% for lithium, nickel and cobalt, but it produces large amounts of wastewater. Developing technologies such as direct recycling and upcycling aim to increase the efficiency of LIB recycling and rely on improved pretreatment processes with automated disassembly and cleaner mechanical separation. Additionally, the range of materials recovered from spent LIBs is expanding from the cathode materials recycled with established methods to include anode materials, electrolytes, binders, separators and current collectors. Achieving an efficient recycling ecosystem will require collaboration between recyclers, battery manufacturers and electric vehicle manufacturers to aid the design and automation of battery disassembly lines.
Latent circuit inference from heterogeneous neural responses during cognitive tasks
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity and task variables leave unknown how heterogeneous responses arise from connectivity to drive behavior. We develop the latent circuit model, a dimensionality reduction approach in which task variables interact via low-dimensional recurrent connectivity to produce behavioral output. We apply the latent circuit inference to recurrent neural networks trained to perform a context-dependent decision-making task and find a suppression mechanism in which contextual representations inhibit irrelevant sensory responses. We validate this mechanism by confirming the behavioral effects of patterned connectivity perturbations predicted by the latent circuit model. We find similar suppression of irrelevant sensory responses in the prefrontal cortex of monkeys performing the same task. We show that incorporating causal interactions among task variables is critical for identifying behaviorally relevant computations from neural response data.
Crystal structures of monomeric BsmI restriction endonuclease reveal coordinated sequential cleavage of two DNA strands
BsmI, a thermophilic Type IIS restriction endonuclease from Bacillus stearothermophilus, presents a unique structural composition, housing two distinct active sites within a single monomer. Recognition of the non-symmetrical 5’-GAATGC-3’ sequence enables precise cleavage of the top and bottom DNA strands. Synthetic biology interventions have led to the transformation of BsmI into Nb.BsmI, a nicking endonuclease. Here we introduce Nt*.BsmI, tailored for top-strand cleavage, which is inactive on standard double-stranded DNA, but active on bottom-strand nicked DNA, suggesting a sequential cleavage mechanism. Crystallographic structures of pre- and post-reactive complexes with cognate DNA show one major conformational change, a retractable loop possibly governing sequential active site accessibility. The x-ray structures reveal the position of the divalent metal ions in the active sites and the DNA:protein interactions, while the models predicted by Alphafold3 are incorrect. This comprehensive structural and functional study lays a foundation for rational enzyme redesign and potential applications in biotechnology.
Lithium-ion battery recycling—a review of the material supply and policy infrastructure
The current change in battery technology followed by the almost immediate adoption of lithium as a key resource powering our energy needs in various applications is undeniable. Lithium-ion batteries (LIBs) are at the forefront of the industry and offer excellent performance. The application of LIBs is expected to continue to increase. The adoption of renewable energies has spurred this LIB proliferation and resulted in a dramatic increase in LIB waste. In this review, we address waste LIB collection and segregation approaches, waste LIB treatment approaches, and related economics. We have coined a “green score” concept based on a review of several quantitative analyses from the literature to compare the three mainstream recycling processes: pyrometallurgical, hydrometallurgical, and direct recycling. In addition, we analyze the current trends in policymaking and in government incentive development directed toward promoting LIB waste recycling. Future LIB recycling perspectives are analyzed, and opportunities and threats to LIB recycling are presented.
Plastic recycling: A panacea or environmental pollution problem
Increasing plastic waste is a critical global challenge to ecological and human health requiring focused solutions to reduce omnipresent plastic pollution in the environment. While recycling has been touted as one solution to counter plastic waste and resource utilization, it has been largely ineffective in offsetting the impact of rising global plastic production of more than 400 million metric tonnes annually, due to low global recycling rates of only 9%. Over three decades since implementing plastic resin codes, recycling has favoured thermoplastics, neglecting thermoset plastics. There is a constant need to enhance overall recycling efficiency by exploring advanced methods, as enormous gaps exist in fully unlocking the potential of plastic recycling. We identify critical gaps associated with plastic waste recycling and its potential environmental impacts. We discuss substantial progress in recycling technology, designs-for-recyclability with controlled chemical use, and economic incentives to expand markets for recycled plastics and to curb plastic leakage into the environment. Additionally, we highlight some emerging strategies and legally binding international policy instruments, such as the Global Plastics Treaty that require further development to reduce plastic waste and improve plastic recyclability.
Responses