Related Articles
Simultaneous tACS-fMRI reveals state- and frequency-specific modulation of hippocampal-cortical functional connectivity
Non-invasive indirect hippocampal-targeted stimulation is of broad scientific and clinical interest. Transcranial alternating current stimulation (tACS) is appealing because it allows oscillatory stimulation to study hippocampal theta (3–8 Hz) activity. We found that tACS administered during functional magnetic resonance imaging yielded a frequency-, mental state- and topologically-specific effect of theta stimulation (but not other frequencies) enhancing right (but not left) hippocampal-cortical connectivity during resting blocks but not during task blocks. Control analyses showed that this effect was not due to possible stimulation-induced changes in signal quality or head movement. Our findings are promising for targeted network modulations of deep brain structures for research and clinical intervention.
Dopaminergic modulation and dosage effects on brain state dynamics and working memory component processes in Parkinson’s disease
Parkinson’s disease (PD) is primarily diagnosed through its characteristic motor deficits, yet it also encompasses progressive cognitive impairments that profoundly affect quality of life. While dopaminergic medications are routinely prescribed to manage motor symptoms in PD, their influence extends to cognitive functions as well. Here we investigate how dopaminergic medication influences aberrant brain circuit dynamics associated with encoding, maintenance and retrieval working memory (WM) task-phases processes. PD participants, both on and off dopaminergic medication, and healthy controls, performed a Sternberg WM task during fMRI scanning. We employ a Bayesian state-space computational model to delineate brain state dynamics related to different task phases. Importantly, a within-subject design allows us to examine individual differences in the effects of dopaminergic medication on brain circuit dynamics and task performance. We find that dopaminergic medication alters connectivity within prefrontal-basal ganglia-thalamic circuits, with changes correlating with enhanced task performance. Dopaminergic medication also restores engagement of task-phase-specific brain states, enhancing task performance. Critically, we identify an “inverted-U-shaped” relationship between medication dosage, brain state dynamics, and task performance. Our study provides valuable insights into the dynamic neural mechanisms underlying individual differences in dopamine treatment response in PD, paving the way for more personalized therapeutic strategies.
Role of GPX3+ astrocytes in breast cancer brain metastasis activated by circulating tumor cell exosomes
Brain metastasis from breast cancer (BMBC) contributes significantly to mortality, yet its mechanisms remain unclear. This study investigates the activation of GPX3+ astrocytes by circulating tumor cell (CTC)-derived exosomes in the metastatic process. Using a mouse model of BMBC, we performed single-cell RNA sequencing (scRNA-seq) and metabolomics to explore the role of GPX3+ astrocytes in the brain microenvironment. We found that CTCs activate these astrocytes, promoting IL-1β production and Th17 cell differentiation, crucial for the formation of the metastatic niche. Conditional knockout of GPX3 reduced brain metastasis and extended survival, highlighting its importance in metastasis. Our findings uncover a novel mechanism by which CTCs activate GPX3+ astrocytes to drive breast cancer brain metastasis, suggesting new therapeutic targets for intervention.
A mathematical framework for comparison of intermittent versus continuous adaptive chemotherapy dosing in cancer
Chemotherapy resistance in cancer remains a barrier to curative therapy in advanced disease. Dosing of chemotherapy is often chosen based on the maximum tolerated dosing principle; drugs that are more toxic to normal tissue are typically given in on-off cycles, whereas those with little toxicity are dosed daily. When intratumoral cell-cell competition between sensitive and resistant cells drives chemotherapy resistance development, it has been proposed that adaptive chemotherapy dosing regimens, whereby a drug is given intermittently at a fixed-dose or continuously at a variable dose based on tumor size, may lengthen progression-free survival over traditional dosing. Indeed, in mathematical models using modified Lotka-Volterra systems to study dose timing, rapid competitive release of the resistant population and tumor outgrowth is apparent when cytotoxic chemotherapy is maximally dosed. This effect is ameliorated with continuous (dose modulation) or intermittent (dose skipping) adaptive therapy in mathematical models and experimentally, however, direct comparison between these two modalities has been limited. Here, we develop a mathematical framework to formally analyze intermittent adaptive therapy in the context of bang-bang control theory. We prove that continuous adaptive therapy is superior to intermittent adaptive therapy in its robustness to uncertainty in initial conditions, time to disease progression, and cumulative toxicity. We additionally show that under certain conditions, resistant population extinction is possible under adaptive therapy or fixed-dose continuous therapy. Here, continuous fixed-dose therapy is more robust to uncertainty in initial conditions than adaptive therapy, suggesting an advantage of traditional dosing paradigms.
Native learning ability and not age determines the effects of brain stimulation
Healthy aging often entails a decline in cognitive and motor functions, affecting independence and quality of life in older adults. Brain stimulation shows potential to enhance these functions, but studies show variable effects. Previous studies have tried to identify responders and non-responders through correlations between behavioral change and baseline parameters, but results lack generalization to independent cohorts. We propose a method to predict an individual’s likelihood of benefiting from stimulation, based on baseline performance of a sequential motor task. Our results show that individuals with less efficient learning mechanisms benefit from stimulation, while those with optimal learning strategies experience none or even detrimental effects. This differential effect, first identified in a public dataset and replicated here in an independent cohort, was linked to one’s ability to integrate task-relevant information and not age. This study constitutes a further step towards personalized clinical-translational interventions based on brain stimulation.
Responses