Related Articles

Spotting false news and doubting true news: a systematic review and meta-analysis of news judgements

How good are people at judging the veracity of news? We conducted a systematic literature review and pre-registered meta-analysis of 303 effect sizes from 67 experimental articles evaluating accuracy ratings of true and fact-checked false news (NParticipants = 194,438 from 40 countries across 6 continents). We found that people rated true news as more accurate than false news (Cohen’s d = 1.12 [1.01, 1.22]) and were better at rating false news as false than at rating true news as true (Cohen’s d = 0.32 [0.24, 0.39]). In other words, participants were able to discern true from false news and erred on the side of skepticism rather than credulity. We found no evidence that the political concordance of the news had an effect on discernment, but participants were more skeptical of politically discordant news (Cohen’s d = 0.78 [0.62, 0.94]). These findings lend support to crowdsourced fact-checking initiatives and suggest that, to improve discernment, there is more room to increase the acceptance of true news than to reduce the acceptance of fact-checked false news.

Worldwide rooftop photovoltaic electricity generation may mitigate global warming

Rooftop photovoltaic (RPV) is often understood as a niche contribution to climate change mitigation. However, the global potential of RPVs to mitigate global warming is unknown. Here we map the global rooftop area at 1-km resolution, quantifying 286,393 km2 of rooftops worldwide through geospatial data mining and artificial intelligence techniques. Using nine advanced Earth system models from the coupled model intercomparison project phase 6, we reveal that RPVs could substantially contribute to reducing global temperatures by 0.05–0.13 °C before 2050. Region-specific analysis underscores the variability in RPV potential and the necessity of tailored approaches to optimize RPV deployment, considering local solar resources, existing infrastructure and grid carbon intensity. Our findings reveal that leveraging RPV systems offers a viable and impactful strategy for reducing carbon footprints and combating climate change globally, while advocating targeted interventions to enhance the benefits of RPVs, particularly in areas with high solar radiation or rapid urbanization.

Mechanism of expression regulation of head-to-head overlapping protein-coding genes INO80E and HIRIP3

Although the existence of overlapping protein-coding genes in eukaryotic genomes is known for decades, their role in regulating expression remains far from fully understood. Here, the mechanism regulating the expression of head-to-head overlapping genes, a pair of INO80E and HIRIP3 genes is presented. Based on a series of experiments, we show that the expression of these genes is strongly dependent on sense/antisense interactions. The overlapping transcripts form an RNA:RNA duplex that has a stabilizing effect on the mRNAs involved, and this stabilization may be mediated by the ELAVL1 protein. We also show that the transcription factor RARG is important for the transcription of both genes studied. In addition, we demonstrate that the overlapping isoform of INO80E forms an R-loop that may positively regulate HIRIP3 isoforms. We propose that both structures, dsRNA and R-loops, help to keep the DNA loop open to allow the transcription of the remaining variants of both genes. However, experiments suggest that RNA:RNA duplex formation plays a major role, while R-loops play only a complementary one. The absence of this dsRNA structure leads to the loss of a stable DNA opening and consequently to transcriptional interference.

The DEAD-box helicase eIF4A1/2 acts as RNA chaperone during mitotic exit enabling chromatin decondensation

During mitosis, chromosomes condense and decondense to segregate faithfully and undamaged. The exact molecular mechanisms are not well understood. We identify the DEAD-box helicase eIF4A1/2 as a critical factor in this process. In a cell-free condensation assay eIF4A1/2 is crucial for this process, relying on its RNA-binding ability but not its ATPase activity. Reducing eIF4A1/2 levels in cells consistently slows down chromatin decondensation during nuclear reformation. Conversely, increasing eIF4A1/2 concentration on mitotic chromosomes accelerates their decondensation. The absence of eIF4A1/2 affects the perichromatin layer, which surrounds the chromosomes during mitosis and consists of RNA and mainly nucleolar proteins. In vitro, eIF4A1/2 acts as an RNA chaperone, dissociating biomolecular condensates of RNA and perichromatin proteins. During mitosis, the chaperone activity of eIF4A1/2 is required to regulate the composition and fluidity of the perichromatin layer, which is crucial for the dynamic reorganization of chromatin as cells exit mitosis.

Circular RNAs in neurological conditions – computational identification, functional validation, and potential clinical applications

Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer’s disease, and Parkinson’s disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.

Responses

Your email address will not be published. Required fields are marked *