Related Articles
Focal cortical dysplasia (type II) detection with multi-modal MRI and a deep-learning framework
Focal cortical dysplasia type II (FCD-II) is a prominent cortical development malformation associated with drug-resistant epileptic seizures that leads to lifelong cognitive impairment. Efficient MRI, followed by its analysis (e.g., cortical abnormality distinction, precise localization assistance, etc.) plays a crucial role in the diagnosis and supervision (e.g., presurgery planning and postoperative care) of FCD-II. Involving machine learning techniques particularly, deep-learning (DL) approaches, could enable more effective analysis techniques. We performed a comprehensive study by choosing six different well-known DL models, three image planes (axial, coronal, and sagittal) of two MRI modalities (T1w and FLAIR), demographic characteristics (age and sex) and clinical characteristics (brain hemisphere and lobes) to identify a suitable DL model for analysing FCD-II. The outcomes show that the DenseNet201 model is more suitable because of its superior classification accuracy, high-precision, F1-score, and large area under the receiver operating characteristic (ROC) curve and precision–recall (PR) curve.
Probabilistic machine learning for battery health diagnostics and prognostics—review and perspectives
Diagnosing lithium-ion battery health and predicting future degradation is essential for driving design improvements in the laboratory and ensuring safe and reliable operation over a product’s expected lifetime. However, accurate battery health diagnostics and prognostics is challenging due to the unavoidable influence of cell-to-cell manufacturing variability and time-varying operating circumstances experienced in the field. Machine learning approaches informed by simulation, experiment, and field data show enormous promise to predict the evolution of battery health with use; however, until recently, the research community has focused on deterministic modeling methods, largely ignoring the cell-to-cell performance and aging variability inherent to all batteries. To truly make informed decisions regarding battery design in the lab or control strategies for the field, it is critical to characterize the uncertainty in a model’s predictions. After providing an overview of lithium-ion battery degradation, this paper reviews the current state-of-the-art probabilistic machine learning models for health diagnostics and prognostics. Details of the various methods, their advantages, and limitations are discussed in detail with a primary focus on probabilistic machine learning and uncertainty quantification. Last, future trends and opportunities for research and development are discussed.
Polygenic scores for autism are associated with reduced neurite density in adults and children from the general population
Genetic variants linked to autism are thought to change cognition and behaviour by altering the structure and function of the brain. Although a substantial body of literature has identified structural brain differences in autism, it is unknown whether autism-associated common genetic variants are linked to changes in cortical macro- and micro-structure. We investigated this using neuroimaging and genetic data from adults (UK Biobank, N = 31,748) and children (ABCD, N = 4928). Using polygenic scores and genetic correlations we observe a robust negative association between common variants for autism and a magnetic resonance imaging derived phenotype for neurite density (intracellular volume fraction) in the general population. This result is consistent across both children and adults, in both the cortex and in white matter tracts, and confirmed using polygenic scores and genetic correlations. There were no sex differences in this association. Mendelian randomisation analyses provide no evidence for a causal relationship between autism and intracellular volume fraction, although this should be revisited using better powered instruments. Overall, this study provides evidence for shared common variant genetics between autism and cortical neurite density.
Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Predictive learning as the basis of the testing effect
A prominent learning phenomenon is the testing effect, meaning that testing enhances retention more than studying. Emergent frameworks propose fundamental (Hebbian and predictive) learning principles as its basis. Predictive learning posits that learning occurs based on the contrast (error) between a prediction and the feedback on that prediction (prediction error). Here, we propose that in testing (but not studying) scenarios, participants predict potential answers, and its contrast with the subsequent feedback yields a prediction error, which facilitates testing-based learning. To investigate this, we developed an associative memory network incorporating Hebbian and/or predictive learning, together with an experimental design where human participants studied or tested English-Swahili word pairs followed by recognition. Three behavioral experiments (N = 80, 81, 62) showed robust testing effects when feedback was provided. Model fitting (of 10 different models) suggested that only models incorporating predictive learning can account for the breadth of data associated with the testing effect. Our data and model suggest that predictive learning underlies the testing effect.
Responses