Related Articles
Electro-spun nanofibers-based triboelectric nanogenerators in wearable electronics: status and perspectives
Electro-Spun nanofibers (ESNs), with their design flexibility, tailorable morphologies, and high surface area, are well-favored as triboelectric nanogenerator (TENG) materials for wearable electronics. Here, various aspects of ESNs-based wearable TENGs were examined. After introducing the most common TENG operating modes, an insightful overview of wearable TENG applications based on ESNs was presented. In this survey, a special attention is paid to wearable sensing, human-machine interaction, self-powered devices, and amplified energy harvesting. Efforts towards improving energy conversion efficiency, material durability, and compatibility with diverse wearable platforms were visited. Finally, a perspective based on particularly material aspect of ESNs is given, which could be insightful in tackling prevailing challenges and giving birth to new directions.
General feature selection technique supporting sex-debiasing in chronic illness algorithms validated using wearable device data
In tasks involving human health condition data, feature selection is heavily affected by data types, the complexity of the condition manifestation, and the variability in physiological presentation. One type of variability often overlooked or oversimplified is the effect of biological sex. As females have been chronically underrepresented in clinical research, we know less about how conditions manifest in females. Innovations in wearable technology have enabled individuals to generate high temporal resolution data for extended periods of time. With millions of days of data now available, additional feature selection pipelines should be developed to systematically identify sex-dependent variability in data, along with the effects of how many per-person data are included in analysis. Here we present a set of statistical approaches as a technique for identifying sex-dependent physiological and behavioral manifestations of complex diseases starting from longitudinal data, which are evaluated on diabetes, hypertension, and their comorbidity.
EEG-based headset sleep wearable devices
The rise of wearable technology has led to EEG-based sleep monitoring devices that use electrodes placed on the forehead, ear, or neck. These devices offer promising applications in clinical and healthy populations by comparing sleep patterns, monitoring intervention responses, and examining the relationship between sleep and lifestyle factors. Despite their potential, challenges like validation against polysomnography, regulatory hurdles, data privacy, and usability hinder clinical adoption. This review explores these devices, their applications, and integration challenges in clinical practice.
Label-free live cell recognition and tracking for biological discoveries and translational applications
Label-free, live cell recognition (i.e. instance segmentation) and tracking using computer vision-aided recognition can be a powerful tool that rapidly generates multi-modal readouts of cell populations at single cell resolution. However, this technology remains hindered by the lack of accurate, universal algorithms. This review presents related biological and computer vision concepts to bridge these disciplines, paving the way for broad applications in cell-based diagnostics, drug discovery, and biomanufacturing.
Revolutionizing wearable technology: advanced fabrication techniques for body-conformable electronics
With the increasing demand for wearable electronic products, there is a pressing need to develop electronic devices that seamlessly conform to the contours of the human body while delivering excellent performance and reliability. Traditional rigid electronic fabrication technologies fall short of meeting these requirements, necessitating the exploration of advanced flexible fabrication technologies that offer new possibilities for designing and fabricating flexible and stretchable electronic products, particularly in wearable devices. Over time, the continuous development of innovative fabrication techniques has ushered in significant improvements in the design freedom, lightweight, seamless integration, and multifunctionality of wearable electronics. Here, we provide a comprehensive overview of the advancements facilitated by advanced fabrication technology in wearable electronics. It specifically focuses on key fabrication methods, including printed electronics fabrication, soft transfer, 3D structure fabrication, and deformation fabrication. By highlighting these advancements, it sheds light on the challenges and prospects for further development in wearable electronics fabrication technologies. The introduction of advanced fabrication technologies has revolutionized the landscape of wearable/conformable electronics, expanding their application domains, streamlining system complexity associated with customization, manufacturing, and production, and opening up new avenues for innovation and development of body-conformable electronics.
Responses