Related Articles
Error-driven upregulation of memory representations
Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.
Psychological booster shots targeting memory increase long-term resistance against misinformation
An increasing number of real-world interventions aim to preemptively protect or inoculate people against misinformation. Inoculation research has demonstrated positive effects on misinformation resilience when measured immediately after treatment via messages, games, or videos. However, very little is currently known about their long-term effectiveness and the mechanisms by which such treatment effects decay over time. We start by proposing three possible models on the mechanisms driving resistance to misinformation. We then report five pre-registered longitudinal experiments (Ntotal = 11,759) that investigate the effectiveness of psychological inoculation interventions over time as well as their underlying mechanisms. We find that text-based and video-based inoculation interventions can remain effective for one month—whereas game-based interventions appear to decay more rapidly—and that memory-enhancing booster interventions can enhance the diminishing effects of counter-misinformation interventions. Finally, we propose an integrated memory-motivation model, concluding that misinformation researchers would benefit from integrating knowledge from the cognitive science of memory to design better psychological interventions that can counter misinformation durably over time and at-scale.
Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.
Integrating molecular photoswitch memory with nanoscale optoelectronics for neuromorphic computing
Photonic solutions are potentially highly competitive for energy-efficient neuromorphic computing. However, a combination of specialized nanostructures is needed to implement all neuro-biological functionality. Here, we show that donor-acceptor Stenhouse adduct dyes integrated with III-V semiconductor nano-optoelectronics have combined excellent functionality for bio-inspired neural networks. The dye acts as synaptic weights in the optical interconnects, while the nano-optoelectronics provide neuron reception, interpretation and emission of light signals. These dyes can reversibly switch from absorbing to non-absorbing states, using specific wavelength ranges. Together, they show robust and predictable switching, low energy thermal reset and a memory dynamic range from days to sub-seconds that allows both short- and long-term memory operation at natural timescales. Furthermore, as the dyes do not need electrical connections, on-chip integration is simple. We illustrate the functionality using individual nanowire photodiodes as well as arrays. Based on the experimental performance metrics, our on-chip solution is capable of operating an anatomically validated model of the insect brain navigation complex.
Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity
Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
Responses