Related Articles
Failed mobility transition in an ideal setting and implications for building a green city
The mobility sector significantly contributes to the climate crisis, impacting several Sustainable Development Goals (SDGs) such as good health (SDG 3), sustainable cities (SDG 11), climate action (SDG 13), and life on land (SDG 15). Despite broad consensus on the need for mobility transformation, practical implementation is contentious due to diverse stakeholder interests. Tübingen, a green showcase city in Germany, exemplifies this challenge. Although ideal for green mobility, a tramway project was rejected in a referendum. This case-study highlights that mobility transition is not just a technical issue but a discourse-communicative challenge, emphasising the role of socially embedded narratives. The study aims to explain the referendum’s rejection by analysing discourses, identifying argumentation patterns, and providing insights for future projects. Using Hajer’s Discourse Coalitions approach and Discourse Network Analysis, the study found that the discourse was dynamic and polarised. The pro-tramway coalition’s communication deficiencies and the opposing coalition’s strong narrative connectivity influenced the outcome. Recommendations for effective communication strategies in future projects are provided.
Free mobility across group boundaries promotes intergroup cooperation
Group cooperation is a cornerstone of human society, enabling achievements that surpass individual capabilities. However, groups also define and restrict who benefits from cooperative actions and who does not, raising the question of how to foster cooperation across group boundaries. This study investigates the impact of voluntary mobility across group boundaries on intergroup cooperation. Participants, organized into two groups, decided whether to create benefits for themselves, group members, or everyone. In each round, they were paired with another participant and could reward the other’s actions during an ‘enforcement stage’, allowing for indirect reciprocity. In line with our preregistered hypothesis, when participants interacted only with in-group members, indirect reciprocity enforced group cooperation, while intergroup cooperation declined. Conversely, higher intergroup cooperation emerged when participants were forced to interact solely with out-group members. Crucially, in the free-mobility treatment – where participants could choose whether to meet an in-group or an out-group member in the enforcement stage – intergroup cooperation was significantly higher than when participants were forced to interact only with in-group members, even though most participants endogenously chose to interact with in-group members. A few ‘mobile individuals’ were sufficient to enforce intergroup cooperation by selectively choosing out-group members, enabling indirect reciprocity to transcend group boundaries. These findings highlight the importance of free intergroup mobility for overcoming the limitations of group cooperation.
Prediction of thermal conductivity in CALF-20 with first-principles accuracy via machine learning interatomic potentials
Understanding the thermal transport properties of CALF-20, a recent addition to the metal-organic framework family, is crucial for its effective utilization in greenhouse gas capture. Here, we report the thermal transport study of CALF-20 using artificial neural network-based machine learning potentials. We use the Green-Kubo approach based on equilibrium molecular dynamics, with a heat-flux renormalization technique, to determine the thermal conductivity (κ) of CALF-20. We predict that the anisotropic thermal transport in CALF-20, with κ below 1 Wm−1K−1 at 300 K, is ideal for thermoelectric applications. Our analysis reveals a weak temperature dependence (κ ~ 1/T0.56) and near invariance with pressure in κ value of CALF-20, which stands out from the typical trend observed in crystalline materials. The outcome of the study, leveraging advanced computational techniques for predictive modeling, offers valuable insights into more suitable applications of CALF-20 with tailored thermal properties.
Suppressed ballistic transport of dislocations at strain rates up to 109 s–1 in a stable nanocrystalline alloy
Dislocations are crucial to plastic deformation in crystals. At extreme strain rates, their motion shifts from thermally activated glide to ballistic transport, causing significant drag due to interactions with phonons, which can lead to embrittlement and failure in metals. The concept of dislons, quantized dislocations, has emerged to better understand these types of interactions. Similar to quantum treatment of dislocation-electron interactions, confining dislocations to nanometer scales, especially in nanocrystalline metals, could also yield unique mechanical behaviors different from bulk materials. Here, we present evidence showing that in Cu-3Ta, a thermo-mechanically stable nanocrystalline alloy, the phonon drag effect is entirely suppressed even at ultra-high strain rates (109 s−1). This is due to the stable confinement of dislocations within several-nanometer range, limiting their velocity and interaction with phonons. Our study indicates that in confined environments, the dislocation-phonon drag effect is minimal, potentially improving material performance under extreme conditions.
First-principles study of the magneto-Raman effect in van der Waals layered magnets
Magneto-Raman spectroscopy has been used to study spin-phonon coupling in two-dimensional (2D) magnets. Raman spectra of CrI3 show a strong dependence on the magnetic order within a layer and between the layers. Here we carry out the first systematic theoretical investigation of the magneto-Raman effect in 2D magnets by performing density functional theory calculations and developing a generalized polarizability model. Our first-principles simulations well reproduce experimental Raman spectra of CrI3 with different magnetic states. The model reveals how the change of spin orientation in each layer is coupled to the layer’s vibration to induce or eliminate the spin-dependent anti-symmetric off-diagonal terms in the Raman tensor for altering the selection rules. We also uncover that the correlation between phonon modes and magnetic orders is a universal phenomenon, which should exist in other phonon modes and 2D magnets. Our predictive simulations and modeling are expected to guide the research in 2D magnets.
Responses