Related Articles
The role of rivers in the origin and future of Amazonian biodiversity
The rich biodiversity of Amazonia is shaped geographically and ecologically by its rivers and their cycles of seasonal flooding. Anthropogenic effects, such as deforestation, infrastructure development and extreme climatic events, threaten the ecological processes sustaining Amazonian ecosystems. In this Review, we explore the coupled evolution of Amazonian rivers and biodiversity associated with terrestrial and seasonally flooded environments, integrating geological, climatic, ecological and genetic evidence. Amazonia and its fluvial environments are highly heterogeneous, and the drainage system is historically dynamic and continually evolving; as a result, the discharge, sediment load and strength of rivers as barriers to biotic dispersal has changed through time. Ecological affinities of taxa, drainage rearrangements and variations in riverine landscape caused by past climate changes have mediated the evolution of the high diversity found in modern-day Amazonia. The connected history of the region’s biodiversity and landscape provides fundamental information for mitigating current and future impacts. However, incomplete knowledge about species taxonomy, distributions, habitat use, ecological interactions and occurrence patterns limits our understanding. Partnerships with Indigenous peoples and local communities, who have close ties to land and natural resources, are key to improving knowledge generation and dissemination, enabling better impact assessments, monitoring and management of the riverine systems at risk from evolving pressures.
Successes and failures of conservation actions to halt global river biodiversity loss
To address the losses of river biodiversity worldwide, various conservation actions have been implemented to promote recovery of species and ecosystems. In this Review, we assess the effectiveness of these actions globally and regionally, and identify causes of success and failure. Overall, actions elicit little improvement in river biodiversity, in contrast with reports from terrestrial and marine ecosystems. This lack of improvement does not necessarily indicate a failure of any individual action. Rather, it can be attributed in part to remaining unaddressed stressors driving biodiversity loss; a poor match between the spatial scale of action and the scale of the affected area; and absence of adequate monitoring, including insufficient timescales, missing reference and control sites or insufficient selection of targeted taxa. Furthermore, outcomes are often not reported and are unevenly distributed among actions, regions and organism groups. Expanding from local-scale actions to coordinated, transformative, catchment-scale management approaches shows promise for improving outcomes. Such approaches involve identifying major stressors, appropriate conservation actions and source populations for recolonization, as well as comprehensive monitoring, relevant legislation and engaging all stakeholders to promote the recovery of river biodiversity.
Extreme drought-heatwave events threaten the biodiversity and stability of aquatic plankton communities in the Yangtze River ecosystems
Rivers are crucial to biogeochemical cycles, connecting terrestrial, oceanic, and atmospheric systems. However, their ecosystems are increasingly threatened by extreme weather events. Here we used the environmental DNA approach to assess the impact of extreme drought-heatwave events on the aquatic plankton communities of the Yangtze River. We showed that an extreme drought-heatwave event reduced the α diversity of communities, increased their β diversity, and simultaneously simplified and destabilized community network structure. This event also shifted the dominant algae taxa from Bacillariophyta to Cyanobacteria, accompanied by increases in organic carbon and labile organic carbon contents. Globally, temperature rises during this extreme drought-heatwave event are more pronounced in high-latitude regions, likely amplifying impacts on river ecosystem biodiversity and stability. Our findings highlight the vulnerability of river ecosystems to extreme events and underscore the need to mitigate climate change’s effects on river ecosystems.
Cenozoic evolution of spring persistent rainfall in East Asia and North America driven by paleogeography
Spring persistent rainfall is a unique climate phenomenon that prevails in East Asia today, providing precious water resources to this densely populated region. However, its Cenozoic history and underlying mechanisms remain poorly understood. Here we show that the spring persistent rainfall in East Asia has emerged since the Miocene, whereas it previously flourished in North America during the Eocene, as revealed by climate models integrated with climate proxies. The contrasting evolution of spring persistent rainfall in East Asia and North America is determined by paleogeography and further influenced by CO2-induced warming. The uplift of the Tibetan Plateau and the westward drift of the Rocky Mountains have triggered a mid-latitude Rossby wave train since the Miocene, altering the position and intensity of the subtropical highs and thus rainfall patterns. Our results illuminate the Cenozoic evolution of spring persistent rainfall, with implications for the spring climate under the extreme future warming.
Thermochronological markers reveal Late Cretaceous strike-slip faulting in the Yangtze Block, South China
Detecting strike-slip tectonics using thermochronology is challenging because the complex relative motion between fault blocks often does not substantially displace the vertical stratigraphy provided by thermochronological ages. Here we investigate the strike-slip tectonics in the Yangtze Block, South China, based on an original conceptual model and the zircon (U-Th)/He (ZHe) analysis of 17 sandstone samples. We exploit as a marker the northwestward trend of progressively decreasing ZHe ages generated by Mesozoic northwestward shortening. The ZHe age trend is broken by evident steps, which are also found in other published thermochronological datasets. We interpret these age steps as marking a previously undetected Late Cretaceous left-lateral strike-slip fault which intersects with prior deformation-propagation direction. Our approach to detect strike-slip faults confirms a major change in the subduction direction of the Paleo-Pacific Plate beneath Eurasia during the Late Cretaceous, and can find applications to other regions where thermochronological ages define suitable dipping markers.
Responses