Related Articles
Hunting indicators for community-led wildlife management in tropical Africa
Engaging local communities is pivotal for wildlife conservation beyond protected areas, aligning with the 30 × 30 target of the Kunming-Montreal Global Biodiversity Framework. We assessed the effectiveness of 33 offtake indicators, derived from hunter declarations, in monitoring the status and extent of degradation of hunted wildlife sourced from camera trap surveys and faunal composition analysis. The rodents:ungulates ratio in offtake and the mean body mass of total offtake emerged as practical and robust indicators of faunal degradation within hunting systems, with significant potential for broader application in similar tropical forest environments. Our findings provide a blueprint for managing and conserving natural resources in tropical regions through community-based initiatives. Involving local stakeholders ensures sustainable wildlife use and fosters ownership and responsibility. This study advances conservation efforts, bridging scientific rigor with community engagement for effective biodiversity preservation.
Regional patterns of wild animal hunting in African tropical forests
Wildlife contributes to the diets, livelihoods and socio-cultural activities of people worldwide; however, unsustainable hunting is a major pressure on wildlife. Regional assessments of the factors associated with hunting offtakes are needed to understand the scale and patterns of wildlife exploitation relevant for policy. We synthesized 83 studies across West and Central Africa to identify the factors associated with variation in offtake. Our models suggest that offtake per hunter per day is greater for hunters who sell a greater proportion of their offtake; among non-hunter-gatherers; and in areas that have better forest condition, are closer to protected areas and are less accessible from towns. We present evidence that trade and gun hunting have increased since 1991 and that areas more accessible from towns and with worse forest condition may be depleted of larger-bodied wildlife. Given the complex factors associated with regional hunting patterns, context-specific hunting management is key to achieving a sustainable future.
Coastal wetland resilience through local, regional and global conservation
Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.
Niche-dependent forest and savanna fragmentation in Tropical South America during the Last Glacial Maximum
The refugia hypothesis, often used to explain Amazonia’s high biodiversity, initially received ample support but has garnered increasing criticism over time. Palynological, phylogenetic, and vegetation model reconstruction studies have been invoked to support the opposing arguments of extensive fragmentation versus a stable Amazonian Forest during Pleistocene glacial maxima. Here, we test the past existence of forest fragments and savanna connectivity by bias-correcting vegetation distributions from a Dynamic Vegetation Model (DVM) driven by paleoclimate simulations for South America during the Last Glacial Maximum (LGM). We find evidence for fragmented forests akin to refugia with extensive tropical humid forests to the west and forest islands in central/southern Amazonia. Drier ecosystems of Northern Llanos, Caatinga and Cerrado may have merged into continuous savanna/grasslands that dominated the continent. However, our reconstructions suggest taller, dense woodland/tropical savanna vegetation and areas of similar bioclimate connected disparate forest fragments across Amazonia. This ecotonal biome may have acted as a corridor for generalist forest and savanna species, creating connectivity that allows for range expansion during glacial periods. Simultaneously, it could have served as a barrier for specialists, inducing diversification through the formation of ‘semi-refugia’.
Catalysing cooperation: the power of collective beliefs in structured populations
Collective beliefs can catalyse cooperation in a population of selfish individuals. We study this transformative power of collective beliefs, an effect that intriguingly persists even when beliefs lack moralising components. Besides the process itself, we consider the structure of human populations explicitly. We incorporate the intricate structure of human populations into our model, acknowledging the bias brought by social and cultural identities in interaction networks. Hence, we develop our model by assuming a heterogeneous group size and structured population. We recognise that beliefs, typically complex story systems, might not spontaneously emerge in society, resulting in different spreading rates for actions and beliefs within populations. As the degree of connectedness can vary among individuals perpetuating a belief, we examine the speed of trust build-up in networks with different connection densities. We then scrutinise the timing, speed and dynamics of trust and belief spread across specific network structures, including random Erdös-Rényi networks, scale-free Barabási-Albert networks, and small-world Newman-Watts-Strogatz networks. By comparing these characteristics across various network topologies, we disentangle the effects of structure, group size diversity, and evolutionary dynamics on the evolution of trust and belief.
Responses