Related Articles
Magnetic hydrochar for sustainable wastewater management
Sustainable wastewater treatment requires economical, high-performance materials. Magnetic hydrochar, synthesized from low-cost feedstocks, combines tunable surface properties and magnetic functionality, enabling efficient pollutant removal, facile magnetic separation, and cost-effectiveness. This review explores recent advancements in the synthesis and application of magnetic hydrochar for wastewater treatment. Magnetic hydrochar is promising for practical wastewater treatment, as demonstrated by sustainability assessments, bridging the gap between cutting-edge technology and practical implementation in environmental remediation.
Achievement of a vacuum-levitated metal mechanical oscillator with ultra-low damping rate at room temperature
A vacuum-levitated metal mechanical oscillator with an ultra-low damping rate is an ideal tool for detecting mass-related short-range forces; however, its realization at room temperature has not yet been achieved, limiting its practical applications. In this study, we developed such an oscillator using a diamagnetically levitated bismuth sphere. We derived an accurate general formula for the sphere’s eddy current damping rate and, based on this, constructed the oscillator from microparticles, successfully reducing its damping rate experimentally to (144 ± 6) μHz—nearly three orders of magnitude lower than that of the untreated sphere. This improvement allows the sub-millimeter-sized levitated metal mechanical oscillator to theoretically achieve a force sensitivity of ((5.17pm 0.12),,{mbox{fN}}/sqrt{{mbox{Hz}},}) and an acceleration sensitivity of ((0.30pm 0.01),,{mbox{ng}}/sqrt{{mbox{Hz}},}) at room temperature. Calculations indicate that using this sphere as a test mass can detect gravitational forces from sub-milligram sources, highlighting its potential for short-range force sensing and the exploration of quantum gravity.
Structural flexible magnetic films for biometric encryption and tactile interaction in wearable devices
Human fingers have fingerprints and mechanoreceptors for biometric information encryption and tactile perception. Ideally, electronic skin (e-skin) integrates identity information and tactile sensing, but this remains challenging. Research on encryption and tactile sensing rarely overlaps. Here, we report using magnetization structures and combinations of magnetic materials to achieve two types of functions: 6n × n invisible secure encryption is achieved through a n × n dipole magnetic array, and multipole magnets are used to achieve decoupling of pressure at various positions and sliding in different directions. The sliding distance ranges from 0 to 2.5 mm, with speeds between 5 and 25 mm/s. This study is based on flexible magnetic films, which have the potential to be used in wearable devices. The magnetic ring and signal detection modules verify the prospects of this fundamental principle in human-computer interaction (HCI) and demonstrate its applications in user identity recognition and tactile interaction.
Magneto-oscillatory localization for small-scale robots
Magnetism is widely used for the wireless localization and actuation of robots and devices for medical procedures. However, current static magnetic localization methods suffer from large required magnets and are limited to only five degrees of freedom due to a fundamental constraint of the rotational symmetry around the magnetic axis. We present the small-scale magneto-oscillatory localization (SMOL) method, which is capable of wirelessly localizing a millimeter-scale tracker with full six degrees of freedom in deep biological tissues. The SMOL device uses the temporal oscillation of a mechanically resonant cantilever with a magnetic dipole to break the rotational symmetry, and exploits the frequency-response to achieve a high signal-to-noise ratio with sub-millimeter accuracy over a large distance of up to 12 centimeters and quasi-continuous refresh rates up to 200 Hz. Integration into real-time closed-loop controlled robots and minimally-invasive surgical tools are demonstrated to reveal the vast potential of the SMOL method.
Discriminating ferrotoroidic from antiferrotoroidic ground states using a 3d quantum spin sensor
Molecular toroidal states have come to the forefront as candidates for next-generation quantum information devices owing to their bistability and protection from weak, short-range magnetic interactions. The protection offered by these non-magnetic vortex spin states proves to be a double-edged sword as inferring their existence in a molecular system has yet to be achieved through experimental means alone. Here, we investigate the anomalous, sickle-shaped, single-crystal magnetisation profile arising in μ-SQUID measurements of a novel CrDy3 molecule. Theoretical modelling supported by ab initio calculations demonstrates that the weak field CrDy3 spin dynamics is resultant from quantum superposition of the CrIII spin states determined by three competing interactions: (i) the alignment of the CrIII magnetic moment to the external magnetic field, (ii) the zero-field splitting of the CrIII ground quartet, and (iii) coupling to the remnant magnetisation of the toroidal ground state in the Dy3 triangle. If zero-field splitting of the central transition metal ion is quenched, it operates as a quantum spin sensor, which can be exploited to experimentally discriminate between ferrotoroidic and antiferrotoroidic ground states in MDy6 double triangle complexes through electron paramagnetic resonance experiments and single-crystal magnetisation measurements with a restricted field sweeping domain.
Responses