Related Articles
Triangulation for causal loop diagrams: constructing biopsychosocial models using group model building, literature review, and causal discovery
The complex nature of many health problems necessitates the use of systems thinking tools like causal loop diagrams (CLDs) to visualize the underlying causal network and facilitate computational simulations of potential interventions. However, the construction of CLDs is limited by the constraints and biases of specific sources of evidence. To address this, we propose a triangulation approach that integrates expert and theory-driven group model building, literature review, and data-driven causal discovery. We demonstrate the utility of this triangulation approach using a case example focused on the trajectory of depressive symptoms in response to a stressor in healthy adults. After triangulation with causal discovery, the CLD exhibited (1) greater comprehensiveness, encompassing multiple research fields; (2) a modified feedback structure; and (3) increased transparency regarding the uncertainty of evidence in the model structure. These findings suggest that triangulation can produce higher-quality CLDs, potentially advancing our understanding of complex diseases.
Urban growth strategy in Greater Sydney leads to unintended social and environmental challenges
Cities have advanced in terms of economic and social status over the past five decades, improving the living conditions of hundreds of millions of people. However, population growth and urban expansion have put pressure on social and environmental conditions. This study examines urban policymakers’ perceptions about causal relationships in the urban system as revealed in urban planning reports. Here we analyzed 500 pages from published urban plans of Greater Sydney between 1968 and 2018 and coded the text into causal maps. The findings show that policymakers adopted a dominant urban development strategy over the past 50 years to pursue economic and public infrastructure growth. Over time, this growth strategy resulted in a number of social and environmental challenges that negatively impacted societal well-being. Although policymakers eventually recognized the seriousness of social and environmental challenges, they never attempted to fundamentally change the dominant growth strategy. Instead, policymakers sought to address the challenges (that is, symptoms) by responding to each issue piecemeal.
Causal chambers as a real-world physical testbed for AI methodology
In some fields of artificial intelligence, machine learning and statistics, the validation of new methods and algorithms is often hindered by the scarcity of suitable real-world datasets. Researchers must often turn to simulated data, which yields limited information about the applicability of the proposed methods to real problems. As a step forward, we have constructed two devices that allow us to quickly and inexpensively produce large datasets from non-trivial but well-understood physical systems. The devices, which we call causal chambers, are computer-controlled laboratories that allow us to manipulate and measure an array of variables from these physical systems, providing a rich testbed for algorithms from a variety of fields. We illustrate potential applications through a series of case studies in fields such as causal discovery, out-of-distribution generalization, change point detection, independent component analysis and symbolic regression. For applications to causal inference, the chambers allow us to carefully perform interventions. We also provide and empirically validate a causal model of each chamber, which can be used as ground truth for different tasks. The hardware and software are made open source, and the datasets are publicly available at causalchamber.org or through the Python package causalchamber.
First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes
MXenes are a versatile family of 2D inorganic materials with applications in energy storage, shielding, sensing, and catalysis. This review highlights computational studies using density functional theory and machine-learning approaches to explore their structure (stacking, functionalization, doping), properties (electronic, mechanical, magnetic), and application potential. Key advances and challenges are critically examined, offering insights into applying computational research to transition these materials from the lab to practical use.
Emotions and individual differences shape human foraging under threat
A common behavior in natural environments is foraging for rewards. However, this is often in the presence of predators. Therefore, one of the most fundamental decisions for humans, as for other animals, is how to apportion time between reward-motivated pursuit behavior and threat-motivated checking behavior. To understand what affects how people strike this balance, we developed an ecologically inspired task and looked at both within-participant dynamics (moods) and between-participant individual differences (questionnaires about real-life behaviors) in two large internet samples (n = 374 and n = 702) in a cross-sectional design. For the within-participant dynamics, we found that people regulate task-evoked stress homeostatically by changing behavior (increasing foraging and hiding). Individual differences, even in superficially related traits (apathy–anhedonia and anxiety–compulsive checking) reliably mapped onto unique behaviors. Worse task performance, due to maladaptive checking, was linked to gender (women checked excessively) and specific anxiety-related traits: somatic anxiety (reduced self-reported checking due to worry) and compulsivity (self-reported disorganized checking). While anhedonia decreased self-reported task engagement, apathy, strikingly, improved overall task performance by reducing excessive checking. In summary, we provide a multifaceted paradigm for assessment of checking for threat in a naturalistic task that is sensitive to both moods as they change throughout the task and clinical dimensions. Thus, it could serve as an objective measurement tool for future clinical studies interested in threat, vigilance or behavior–emotion interactions in contexts requiring both reward seeking and threat avoidance.
Responses