Related Articles

Safety and efficacy of the ROCK-2-inhibitor Belumosudil in cGvHD treatment – a retrospective, German-Swiss multicenter real-world data analysis

Belumosudil is a first in class ROCK2-inhibitor approved by the FDA for the 3rd line treatment of chronic graft-versus-host disease (cGvHD). In this retrospective real-world analysis, we report safety and efficacy data of belumosudil treatment from 5 German/Swiss transplant centers. A total of 33 adult patients (median age 59 years) with moderate (n = 2) or severe (n = 31) cGvHD were treated on individual request due to lack of EMA approval. The patient cohort had a long history of cGvHD (median 44 months) and was heavily pretreated (median 4 prior lines). The overall response rate was 42% (95%CI, 25–60%) including organ responses in all organs except the liver (n = 2). The median time to response was 3 months (range, 1–9 months) and 8 of 14 patients (57%) had a durable response at last follow-up. One-third of patients had at least a 50% reduction in concomitant corticosteroid dosage. Median failure-free survival and median overall survival were 16.5 and 23.1 months, respectively. Adverse events ≥CTCAE grade 3 were reported in 27% of patients, with a predominance of infectious events, including one fatal course. The results are consistent with previous prospective trials including a favorable safety profile, while acknowledging the challenges of a heavily pretreated patient cohort.

Human neural dynamics of real-world and imagined navigation

The ability to form episodic memories and later imagine them is integral to the human experience, influencing our recollection of the past and envisioning of the future. While rodent studies suggest the medial temporal lobe, especially the hippocampus, is involved in these functions, its role in human imagination remains uncertain. In human participants, imaginations can be explicitly instructed and reported. Here we investigate hippocampal theta oscillations during real-world and imagined navigation using motion capture and intracranial electroencephalographic recordings from individuals with chronically implanted medial temporal lobe electrodes. Our results revealed intermittent theta dynamics, particularly within the hippocampus, encoding spatial information and partitioning navigational routes into linear segments during real-world navigation. During imagined navigation, theta dynamics exhibited similar patterns despite the absence of external cues. A statistical model successfully reconstructed real-world and imagined positions, providing insights into the neural mechanisms underlying human navigation and imagination, with implications for understanding memory in real-world settings.

Evolution of temporomandibular joint reconstruction: from autologous tissue transplantation to alloplastic joint replacement

The reconstruction of the temporomandibular joint presents a multifaceted clinical challenge in the realm of head and neck surgery, underscored by its relatively infrequent occurrence and the lack of comprehensive clinical guidelines. This review aims to elucidate the available approaches for TMJ reconstruction, with a particular emphasis on recent groundbreaking advancements. The current spectrum of TMJ reconstruction integrates diverse surgical techniques, such as costochondral grafting, coronoid process grafting, revascularized fibula transfer, transport distraction osteogenesis, and alloplastic TMJ replacement. Despite the available options, a singular, universally accepted ‘gold standard’ for reconstructive techniques or materials remains elusive in this field. Our review comprehensively summarizes the current available methods of TMJ reconstruction, focusing on both autologous and alloplastic prostheses. It delves into the differences of each surgical technique and outlines the implications of recent technological advances, such as 3D printing, which hold the promise of enhancing surgical precision and patient outcomes. This evolutionary progress aims not only to improve the immediate results of reconstruction but also to ensure the long-term health and functionality of the TMJ, thereby improving the quality of life for patients with end-stage TMJ disorders.

Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling

We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2−/− mice. Finally, TLR2−/− animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.

Pathogens and planetary change

Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.

Responses

Your email address will not be published. Required fields are marked *