Related Articles

Polycomb-associated and Trithorax-associated developmental conditions—phenotypic convergence and heterogeneity

Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset. We analysed Human Phenotype Ontology (HPO) data to identify phenotypes enriched in this group, in comparison to other monogenic conditions within DECIPHER. We then assessed phenotypic relationships between single gene diagnoses within the PcG and TrxG group, by applying semantic similarity analysis and hierarchical clustering. Finally, we analysed patient-level phenotypic heterogeneity in this group, irrespective of specific genetic diagnosis, by applying the same clustering approach. Collectively, PcG/TrxG diagnoses were associated with increased reporting of HPO terms relating to integument, growth, head and neck, limb and digestive abnormalities. Gene group analysis identified three multi-gene clusters differentiated by microcephaly, limb/digit dysmorphologies, growth abnormalities and atypical behavioural phenotypes. Patient-level analysis identified two large clusters differentiated by neurodevelopmental abnormalities and facial dysmorphologies respectively, as well as smaller clusters associated with more specific phenotypes including behavioural characteristics, eye abnormalities, growth abnormalities and skull dysmorphologies. Importantly, patient-level phenotypic clusters did not align with genetic diagnoses. Data-driven approaches can highlight pathway-level and gene-level phenotypic convergences, and individual-level phenotypic heterogeneities. Future studies are needed to understand the multi-level mechanisms contributing to both convergence and variability within this population, and to extend data collection and analyses to later-emerging health characteristics.

International Precision Child Health Partnership (IPCHiP): an initiative to accelerate discovery and improve outcomes in rare pediatric disease

Advances in genomic technologies have revolutionized the diagnosis of rare genetic diseases, leading to the emergence of precision therapies. However, there remains significant effort ahead to ensure the promise of precision medicine translates to improved outcomes. Here, we discuss the challenges in advancing precision child health and highlight how international collaborations such as the International Precision Child Health Partnership, which embed research into clinical care, can maximize benefits for children globally.

Whole-genome sequencing analysis identifies rare, large-effect noncoding variants and regulatory regions associated with circulating protein levels

The contribution of rare noncoding genetic variation to common phenotypes is largely unknown, as a result of a historical lack of population-scale whole-genome sequencing data and the difficulty of categorizing noncoding variants into functionally similar groups. To begin addressing these challenges, we performed a cis association analysis using whole-genome sequencing data, consisting of 1.1 billion variants, 123 million noncoding aggregate-based tests and 2,907 circulating protein levels in ~50,000 UK Biobank participants. We identified 604 independent rare noncoding single-variant associations with circulating protein levels. Unlike protein-coding variation, rare noncoding genetic variation was almost as likely to increase or decrease protein levels. Rare noncoding aggregate testing identified 357 conditionally independent associated regions. Of these, 74 (21%) were not detectable by single-variant testing alone. Our findings have important implications for the identification, and role, of rare noncoding genetic variation associated with common human phenotypes, including the importance of testing aggregates of noncoding variants.

Long-read genome sequencing resolves complex genomic rearrangements in rare genetic syndromes

Long-read sequencing can often overcome the deficiencies in routine microarray or short-read technologies in detecting complex genomic rearrangements. Here we used Pacific Biosciences circular consensus sequencing to resolve complex rearrangements in two patients with rare genetic anomalies. Copy number variants (CNVs) identified by clinical microarray —chr8p deletion and chr8q duplication in patient 1, and interstitial deletions of chr18q in patient 2—were suggestive of underlying rearrangements. Long-read genome sequencing not only confirmed these CNVs but also revealed their genomic structures. In patient 1, we resolved a novel recombinant chromosome 8 (Rec8)-like rearrangement with a 3.43 Mb chr8q terminal duplication that was linked to a 7.25–8.21 Mb chr8p terminal deletion. In patient 2, we uncovered a novel complex rearrangement involving a 1.17 Mb rearranged segment and four interstitial deletions ranging from 9 bp to 12.39 Mb. Our results underscore the diversity of clinically relevant structural rearrangements and the power of long-read sequencing in unraveling their nuanced architectures.

Responses

Your email address will not be published. Required fields are marked *