Related Articles

ALLTogether recommendations for biobanking samples from patients with acute lymphoblastic leukaemia: a modified Delphi study

Acute lymphoblastic leukaemia (ALL) is a rare and heterogeneous disease. The ALLTogether consortium has implemented a treatment protocol to improve outcome and reduce treatment-related toxicity across much of Europe. The consortium provides the opportunity to design translational research on patient material stored in national biobanks. However, there are currently no standardized guidelines for the types of material, processing, and storage for leukaemia biobanking. To address this gap, we conducted a modified Delphi survey among 53 experts in different roles related to leukaemia. The first round consisted of 63 statements asking for level of agreement. The second round refined some to reach consensus, using yes-no and multiple-option answers. Key recommendations include cryopreservation of cells from diagnosis, post-induction, post-consolidation, and relapse, with at least two aliquots of plasma and serum, and cerebrospinal fluid from diagnosis, day15, and post-induction. It was advised to distribute cells across multiple vials for various research projects, and to collect data on sample processing, cell viability, and blast percentage. Quality monitoring and user feedback were strongly recommended. The Delphi survey resulted in strong recommendations that can be used by national biobanks to harmonize storage of samples from patients with ALL and ensure high-quality cryopreserved cells for research studies.

Artificial intelligence in clinical genetics

Artificial intelligence (AI) has been growing more powerful and accessible, and will increasingly impact many areas, including virtually all aspects of medicine and biomedical research. This review focuses on previous, current, and especially emerging applications of AI in clinical genetics. Topics covered include a brief explanation of different general categories of AI, including machine learning, deep learning, and generative AI. After introductory explanations and examples, the review discusses AI in clinical genetics in three main categories: clinical diagnostics; management and therapeutics; clinical support. The review concludes with short, medium, and long-term predictions about the ways that AI may affect the field of clinical genetics. Overall, while the precise speed at which AI will continue to change clinical genetics is unclear, as are the overall ramifications for patients, families, clinicians, researchers, and others, it is likely that AI will result in dramatic evolution in clinical genetics. It will be important for all those involved in clinical genetics to prepare accordingly in order to minimize the risks and maximize benefits related to the use of AI in the field.

Engineering bone/cartilage organoids: strategy, progress, and application

The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.

Evolution, genetic diversity, and health

Human genetic diversity in today’s world has been shaped by evolutionary history, demographic shifts and environmental exposures, influencing complex traits, disease susceptibility and drug responses. Capturing this diversity is essential for advancing precision medicine and promoting equitable healthcare. Despite the great progress achieved with initiatives such as the human Pangenome and large biobanks that aim for a better representation of human diversity, important challenges remain. In this Perspective, we discuss the importance of diversity in clinical genomics through an evolutionary lens. We highlight progress and challenges and outline key clinical applications of diverse genetic data. We argue that diversifying both datasets and methodologies—integrating ancestral and environmental factors—is crucial for fully understanding the genetic basis of human health and disease.

Pathogens and planetary change

Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.

Responses

Your email address will not be published. Required fields are marked *