Related Articles
Person-centered analyses reveal that developmental adversity at moderate levels and neural threat/safety discrimination are associated with lower anxiety in early adulthood
Parsing heterogeneity in the nature of adversity exposure and neurobiological functioning may facilitate better understanding of how adversity shapes individual variation in risk for and resilience against anxiety. One putative mechanism linking adversity exposure with anxiety is disrupted threat and safety learning. Here, we applied a person-centered approach (latent profile analysis) to characterize patterns of adversity exposure at specific developmental stages and threat/safety discrimination in corticolimbic circuitry in 120 young adults. We then compared how the resultant profiles differed in anxiety symptoms. Three latent profiles emerged: (1) a group with lower lifetime adversity, higher neural activation to threat, and lower neural activation to safety; (2) a group with moderate adversity during middle childhood and adolescence, lower neural activation to threat, and higher neural activation to safety; and (3) a group with higher lifetime adversity exposure and minimal neural activation to both threat and safety. Individuals in the second profile had lower anxiety than the other profiles. These findings demonstrate how variability in within-person combinations of adversity exposure and neural threat/safety discrimination can differentially relate to anxiety, and suggest that for some individuals, moderate adversity exposure during middle childhood and adolescence could be associated with processes that foster resilience to future anxiety.
Noise causes cardiovascular disease: it’s time to act
Chronic transportation noise is an environmental stressor affecting a substantial portion of the population. The World Health Organization (WHO) and various studies have established associations between transportation noise and cardiovascular disease (CVD), such as myocardial infarction, stroke, heart failure, and arrhythmia. The WHO Environmental Noise Guidelines and recent reviews confirm a heightened risk of cardiovascular incidents with increasing transportation noise levels.
Early cardio-oncology intervention in thoracic radiotherapy: prospective single-arm pilot study
While there is increasing recognition of the morbidity of cardiovascular disease in cancer survivors, including accelerated atherosclerosis following thoracic radiotherapy, patients are frequently under-optimized for cardiovascular risk.
Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Role of pancreatic lipase inhibition in obesity treatment: mechanisms and challenges towards current insights and future directions
The worldwide health emergency of obesity is closely connected to how dietary fats are metabolized, whereas the process is significantly influenced by pancreatic lipase (PL), an enzyme critical for lipid hydrolysis into fatty acids. This narrative review employs a methodological approach utilizing literature searches of PubMed data up to March 2024. The search term criteria encompasses keywords related to the role, mechanism, challenges, and current and future treatments of pancreatic lipase in obesity with an overall references is 106. This paper offers a comprehensive explanation of the role of PL, underlining its significance in the digestive process and lipid imbalances that contribute to obesity and by extension, its impact on obesity development and progression. Additionally, it delves into the dual functionality of the pancreas, emphasizing its impact on metabolism and energy utilization which, when dysregulated, promotes obesity. A focal point of this review is the investigation into the efficacy, challenges, and adverse effects of current pancreatic lipase inhibitors, with orlistat being highlighted as a primary current drug delivery. By discussing advanced obesity treatments, including the exploration of novel anti-obesity medications that target specific biological pathways, this review underscores the complexity of obesity treatment and the necessity for a multifaceted approach. In conclusion, this paper emphasizing the importance of understanding the role of enzymes like pancreatic lipase mechanistic and adopting a multidisciplinary approach to treatment and side effects of current obesity drugs and explore new emerging therapeutic strategies for more effective obesity management.
Responses