Related Articles

Enhanced osteogenic potential of iPSC-derived mesenchymal progenitor cells following genome editing of GWAS variants in the RUNX1 gene

Recent genome-wide association studies (GWAS) identified 518 significant loci associated with bone mineral density (BMD), including variants at the RUNX1 locus (rs13046645, rs2834676, and rs2834694). However, their regulatory impact on RUNX1 expression and bone formation remained unclear. This study utilized human induced pluripotent stem cells (iPSCs) differentiated into osteoblasts to investigate these variants’ regulatory roles. CRISPR/Cas9 was employed to generate mutant (Δ) iPSC lines lacking these loci at the RUNX1 locus. Deletion lines (Δ1 and Δ2) were created in iPSCs to assess the effects of removing regions containing these loci. Deletion lines exhibited enhanced osteogenic potential, with increased expression of osteogenic marker genes and Alizarin Red staining. Circularized chromosome conformation capture (4C-Seq) was utilized to analyze interactions between BMD-associated loci and the RUNX1 promoter during osteogenesis. Analysis revealed altered chromatin interactions with multiple gene promoters including RUNX1 isoform, as well as SETD4, a histone methyltransferase, indicating their regulatory influence. Interestingly, both deletion lines notably stimulated the expression of the long isoform of RUNX1, with more modest effects on the shorter isoform. Consistent upregulation of SETD4 and other predicted targets within the Δ2 deletion suggested its removal removed a regulatory hub constraining expression of multiple genes at this locus. In vivo experiments using a bone defect model in mice demonstrated increased bone regeneration with homozygous deletion of the Δ2 region. These findings indicate that BMD-associated variants within the RUNX1 locus regulate multiple effector genes involved in osteoblast commitment, providing valuable insights into genetic regulation of bone density and potential therapeutic targets.

Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies

Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.

Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma

Dissecting the spatial heterogeneity of cancer-associated fibroblasts (CAFs) is vital for understanding tumor biology and therapeutic design. By combining pathological image analysis with spatial proteomics, we revealed two stromal archetypes in hepatocellular carcinoma (HCC) with different biological functions and extracellular matrix compositions. Using paired single-cell RNA and epigenomic sequencing with Stereo-seq, we revealed two fibroblast subsets CAF-FAP and CAF-C7, whose spatial enrichment strongly correlated with the two stromal archetypes and opposing patient prognosis. We discovered two functional units, one is the intratumor inflammatory hub featured by CAF-FAP plus CD8_PDCD1 proximity and the other is the marginal wound-healing hub with CAF-C7 plus Macrophage_SPP1 co-localization. Inhibiting CAF-FAP combined with anti-PD-1 in orthotopic HCC models led to improved tumor regression than either monotherapy. Collectively, our findings suggest stroma-targeted strategies for HCC based on defined stromal archetypes, raising the concept that CAFs change their transcriptional program and intercellular crosstalk according to the spatial context.

The DEAD-box helicase eIF4A1/2 acts as RNA chaperone during mitotic exit enabling chromatin decondensation

During mitosis, chromosomes condense and decondense to segregate faithfully and undamaged. The exact molecular mechanisms are not well understood. We identify the DEAD-box helicase eIF4A1/2 as a critical factor in this process. In a cell-free condensation assay eIF4A1/2 is crucial for this process, relying on its RNA-binding ability but not its ATPase activity. Reducing eIF4A1/2 levels in cells consistently slows down chromatin decondensation during nuclear reformation. Conversely, increasing eIF4A1/2 concentration on mitotic chromosomes accelerates their decondensation. The absence of eIF4A1/2 affects the perichromatin layer, which surrounds the chromosomes during mitosis and consists of RNA and mainly nucleolar proteins. In vitro, eIF4A1/2 acts as an RNA chaperone, dissociating biomolecular condensates of RNA and perichromatin proteins. During mitosis, the chaperone activity of eIF4A1/2 is required to regulate the composition and fluidity of the perichromatin layer, which is crucial for the dynamic reorganization of chromatin as cells exit mitosis.

Systematic identification of cancer pathways and potential drugs for intervention through multi-omics analysis

The pathogenesis of cancer is complicated, and different types of cancer often exhibit different gene mutations resulting in different omics profiles. The purpose of this study was to systematically identify cancer-specific biological pathways and potential cancer-targeting drugs. We collectively analyzed the transcriptomics and proteomics data from 16 common types of human cancer to study the mechanism of carcinogenesis and seek potential treatment. Statistical approaches were applied to identify significant molecular targets and pathways related to each cancer type. Potential anti-cancer drugs were subsequently retrieved that can target these pathways. The number of significant pathways linked to each cancer type ranged from four (stomach cancer) to 112 (acute myeloid leukemia), and the number of therapeutic drugs that can target these cancer related pathways, ranged from one (ovarian cancer) to 97 (acute myeloid leukemia and non-small-cell lung carcinoma). As a validation of our method, some of these drugs are FDA approved therapies for their corresponding cancer type. Our findings provide a rich source of testable hypotheses that can be applied to deconvolute the complex underlying mechanisms of human cancer and used to prioritize and repurpose drugs as anti-cancer therapies.

Responses

Your email address will not be published. Required fields are marked *