Related Articles

Expert consensus on the diagnosis and therapy of endo-periodontal lesions

Endo-periodontal lesions (EPLs) involve both the periodontium and pulp tissue and have complicated etiologies and pathogenic mechanisms, including unique anatomical and microbiological characteristics and multiple contributing factors. This etiological complexity leads to difficulties in determining patient prognosis, posing great challenges in clinical practice. Furthermore, EPL-affected teeth require multidisciplinary therapy, including periodontal therapy, endodontic therapy and others, but there is still much debate about the appropriate timing of periodontal therapy and root canal therapy. By compiling the most recent findings on the etiology, pathogenesis, clinical characteristics, diagnosis, therapy, and prognosis of EPL-affected teeth, this consensus sought to support clinicians in making the best possible treatment decisions based on both biological and clinical evidence.

The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition

Forests are composed of various plant species, and rhizosphere soil microbes are driven by root exudates. However, the interplay between root exudates, microbial communities in the rhizosphere soil of canopy trees, understory shrubs, grasses, and their responses to nitrogen (N) deposition remains unclear. Pinus tabulaeformis, Rosa xanthina, and Carex lancifolia were used to investigate root exudates, rhizosphere soil microbial communities, and their responses to N application in forest ecosystem. Root exudate abundances of P. tabulaeformis were significantly higher than that of R. xanthina and C. lancifolia, with carbohydrates dominating P. tabulaeformis and R. xanthina root exudates, fatty acids prevailing in C. lancifolia root exudates. Following N application, root exudate abundances of P. tabulaeformis and R. xanthina initially increased before decreasing, whereas those of C. lancifolia decreased. Microbial number of rhizosphere soil of C. lancifolia was higher than that of P. tabulaeformis and R. xanthina, but there was insignificant variation of rhizosphere soil microbial diversity among plant species. N application exerted promotional and inhibitory impacts on bacterial and fungal numbers, respectively, while bacterial and fungal diversities were increased by N application. Overall, N application had negative effects on root exudates of P. tabulaeformis, inhibiting rhizosphere soil microbial populations. N application suppressed rhizosphere soil microbial populations by increasing root exudates of R. xanthina. Conversely, N application elevated nutrient content in the rhizosphere soil of C. lancifolia, reducing root exudates and minimally promoting microbial populations. This study highlights the importance of understory vegetation in shaping soil microbial communities within forests under N deposition.

Expert consensus on intentional tooth replantation

Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.

Metabolite-driven mechanisms reveal chemical ecology of Lehmann Lovegrass (Eragrostis lehmanniana) invasion in North American semi-arid ecosystems

Invasive plants threaten global ecosystems, yet traditional analyses of functional traits cannot fully explain their dominance over co-occurring natives. Metabolomics offers insights into plant invasions, but single-technique studies often miss critical biochemical mechanisms. We employ a multimodal metabolomics approach (¹H NMR, LC MS/MS, FT-ICR-MS, and MALDI-MSI) to investigate the biochemical basis of Lehmann lovegrass (Eragrostis lehmanniana) invasion in semi-arid North America, comparing it with a co-occurring native grass, Arizona cottontop (Digitaria californica). Our analysis reveals three metabolomic traits of Lehmann lovegrass compared to Arizona cottontop: Enhanced nitrogen allocation in shoots, reduced defensive metabolites in root layers; and increased root exudate modulation under stress conditions. These traits suggest Lehmann lovegrass succeeds through adaptation to increasing aridity rather than direct competition, demonstrating adaptation to nutrient-poor environments and high phenotypic plasticity in response to increasing aridity. This integrated metabolomic approach provides new mechanistic insights into invasion ecology and plant adaptation under environmental change.

Conserved immunomodulation and variation in host association by Xanthomonadales commensals in Arabidopsis root microbiota

Suppression of chronic Arabidopsis immune responses is a widespread but typically strain-specific trait across the major bacterial lineages of the plant microbiota. We show by phylogenetic analysis and in planta associations with representative strains that immunomodulation is a highly conserved, ancestral trait across Xanthomonadales, and preceded specialization of some of these bacteria as host-adapted pathogens. Rhodanobacter R179 activates immune responses, yet root transcriptomics suggest this commensal evades host immune perception upon prolonged association. R179 camouflage likely results from combined activities of two transporter complexes (dssAB) and the selective elimination of immunogenic peptides derived from all partners. The ability of R179 to mask itself and other commensals from the plant immune system is consistent with a convergence of distinct root transcriptomes triggered by immunosuppressive or non-suppressive synthetic microbiota upon R179 co-inoculation. Immunomodulation through dssAB provided R179 with a competitive advantage in synthetic communities in the root compartment. We propose that extensive immunomodulation by Xanthomonadales is related to their adaptation to terrestrial habitats and might have contributed to variation in strain-specific root association, which together accounts for their prominent role in plant microbiota establishment.

Responses

Your email address will not be published. Required fields are marked *