Related Articles

Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors

A large body of evidence suggests that hypoxia drives aggressive molecular features of malignant cells irrespective of cancer type. Non-Hodgkin lymphomas (NHL) are the most common hematologic malignancies characterized by frequent involvement of diverse hypoxic microenvironments. We studied the impact of long-term deep hypoxia (1% O2) on the biology of lymphoma cells. Only 2 out of 6 tested cell lines (Ramos, and HBL2) survived ≥ 4 weeks under hypoxia. The hypoxia-adapted (HA)b Ramos and HBL2 cells had a decreased proliferation rate accompanied by significant suppression of both oxidative phosphorylation and glycolytic pathways. Transcriptome and proteome analyses revealed marked downregulation of genes and proteins of the mitochondrial respiration complexes I and IV, and mitochondrial ribosomal proteins. Despite the observed suppression of glycolysis, the proteome analysis of both HA cell lines showed upregulation of several proteins involved in the regulation of glucose utilization including the active catalytic component of prolyl-4-hydroxylase P4HA1, an important druggable oncogene. HA cell lines demonstrated increased transcription of key regulators of auto-/mitophagy, e.g., neuritin, BCL2 interacting protein 3 (BNIP3), BNIP3-like protein, and BNIP3 pseudogene. Adaptation to hypoxia was further associated with deregulation of apoptosis, namely upregulation of BCL2L1/BCL-XL, overexpression of BCL2L11/BIM, increased binding of BIM to BCL-XL, and significantly increased sensitivity of both HA cell lines to A1155463, a BCL-XL inhibitor. Finally, in both HA cell lines AKT kinase was hyperphosphorylated and the cells showed increased sensitivity to copanlisib, a pan-PI3K inhibitor. In conclusion, our data report on several shared mechanisms of lymphoma cell adaptation to long-term hypoxia including: 1. Upregulation of proteins responsible for glucose utilization, 2. Degradation of mitochondrial proteins for potential mitochondrial recycling (by mitophagy), and 3. Increased dependence on BCL-XL and PI3K-AKT signaling for survival. In translation, inhibition of glycolysis, BCL-XL, or PI3K-AKT cascade may result in targeted elimination of HA lymphoma cells.

STAT6 mutations compensate for CREBBP mutations and hyperactivate IL4/STAT6/RRAGD/mTOR signaling in follicular lymphoma

Activating mutations in STAT6 are common in Follicular Lymphoma (FL) and transformed FL and various other B cell lymphomas. Here, we report RNA-seq based gene expression data on normal human lymph node derived B lymphocytes (NBC; N = 6), and primary human FL WT (N = 11) or mutant (N = 4) for STAT6 before and after ex vivo stimulation with IL4. We found that STAT6 mutants result in broad based augmentation of IL4-induced gene expression. Unexpectedly, in FL with WT STAT6 we measured reduced baseline and IL4-induced gene expression levels when compared with NBC lymphocytes or FL with STAT6 mutations. We tracked the attenuated IL4/JAK/STAT6 response to co-existing CREBBP mutations and experimentally verified that intact CREBBP is required for the induction of many IL4-induced genes. One of the IL4-induced genes here identified is RRAGD, a small G-protein involved in lysosomal mTOR activation. We show that IL4 treatment induced RRAGD expression, that RRAGD is required for mTOR activation in lymphoma cells and that IL4-enhanced BCR signaling induced mTOR activation. The IL4 and BCR-induced mTOR activation was reduced by CREBBP mutants and augmented by mutant STAT6, establishing a link between STAT6 mutations and mTOR regulated pro-growth pathways in lymphoma.

Building collaborative infrastructures for an interdisciplinary higher education master’s program

This paper examines the practices and importance of building a collaborative infrastructure in interdisciplinary education, using the context of the master’s program developed by the Interdisciplinary Consortium for Applied Research in Ecology and Evolution (ICARE) as a case study. The study focuses on two levels of collaborative infrastructure: The project organization and project practice of the ICARE program and the specific use of CoNavigator, a physical tool for interdisciplinary teaching, learning, and collaboration. The analysis explores the educational aspects of the ICARE program and investigates how the training teams (each consisting of a master’s student, supervisors, and mentors) within the project organized themselves and developed their collaboration methods. By examining the challenges faced by ICARE and the implications for its Trainees and stakeholders, this paper emphasizes the significance of prioritizing and developing robust and explicit collaborative infrastructures both at the program and institutional level, as the challenges identified in ICARE mirror those at higher institutional levels, where interdisciplinary activities are not sustained unless they are fully embedded in the visible and physical structures. The findings provide valuable insights for future interdisciplinary study programs and underscore the necessity of proactive infrastructure planning and implementation to support successful interdisciplinary teaching and learning practices.

The guided fire from within: intratumoral administration of mRNA-based vaccines to mobilize memory immunity and direct immune responses against pathogen to target solid tumors

We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein. This action rapidly mobilized the pre-existing memory immunity against SARS-CoV-2 to kill the cancer cells displaying the spike protein, while concurrently reprogramming the tumor microenvironment (TME) by attracting immune cells. The partial elimination of tumor cells in a normalized TME further triggered extensive tumor antigen-specific T cell responses through antigen spreading, eventually resulting in potent and systemic tumor-targeting immune responses. Moreover, combining BNT162b2 treatment with anti-PD-L1 therapy yielded a more substantial therapeutic impact, even in “cold tumor” types that are typically less responsive to treatment. Given that the majority of the global population has acquired memory immunity against various pathogens through infection or vaccination, we believe that, in addition to utilizing the widely held immune memory against SARS-CoV-2 via COVID-19 vaccine, mRNA vaccines against other pathogens, such as Hepatitis B Virus (HBV), Common Human Coronaviruses (HCoVs), and the influenza virus, could be rapidly transitioned into clinical use and holds great promise in treating different types of cancer. The extensive selection of pathogen antigens expands therapeutic opportunities and may also overcome potential drug resistance.

International myeloma working group immunotherapy committee recommendation on sequencing immunotherapy for treatment of multiple myeloma

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein–coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies. The International Myeloma Working Group conveyed panel of experts to review patient and disease-related factors affecting efficacy and safety of immunotherapy, summarize existing information on sequencing therapy and provide a series of core recommendations.

Responses

Your email address will not be published. Required fields are marked *