Related Articles
Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.
Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a spectrum of liver damage starting with liver steatosis and lipid disorders presented as the hallmark. Cannabinoid-2 receptor (CB2R) is the receptor of endocannabinoids mainly expressed in immune cells. Our preliminary study revealed the preventative role of CB2R in liver injury related to lipid metabolism. In this study, we aimed to explore the role of CB2R in NAFLD and the underlying mechanism related to microbial community. High-fat diet-induced NAFLD model was established in mice. We found that hepatic CB2R expression was significantly reduced in NAFLD mice and CB2R–/– mice fed with normal chow. Interestingly, cohousing with or transplanted with microbiota from WT mice, or treatment with an antibiotic cocktail ameliorated the NAFLD phenotype of CB2R–/– mice. The gut dysbiosis in CB2R–/– mice including increased Actinobacteriota and decreased Bacteroidota was similar to that of NAFLD patients and NAFLD mice. Microbial functional analysis and metabolomics profiling revealed obviously disturbed tryptophan metabolism in NAFLD patients and NAFLD mice, which were also seen in CB2R–/– mice. Correlation network showed that the disordered tryptophan metabolites such as indolelactic acid (ILA) and xanthurenic acid in CB2R-/- mice were mediated by gut dysbiosis and related to NAFLD severity indicators. In vitro and in vivo validation experiments showed that the enriched tryptophan metabolites ILA aggravated NAFLD phenotypes. These results demonstrate the involvement of CB2R in NAFLD, which is related to gut microbiota-mediated tryptophan metabolites. Our findings highlight CB2R and the associated microbes and tryptophan metabolites as promising targets for the treatment of NAFLD.
A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that Tb is an important mediator of the aging processes.
Efficacy of emergency maternal MVA-ZIKV vaccination in a rapid challenge model of lethal Zika infection
Zika virus (ZIKV) outbreak of 2015 was associated with microcephaly and congenital birth defects in children born to pregnant women infected with ZIKV. Using the highly susceptible Type I Interferon Receptor-deficient mouse-model, we demonstrate that a single emergency vaccination with a non-replicating MVA-ZIKV vaccine, when administered as early as 2-days before challenge fully protected non-pregnant and pregnant mice and fetuses against lethal ZIKV-infection. Early protection was associated with the rapid emergence of ZIKV-specific CD8+ T cell responses; depletion of CD8+ T cells resulted in the loss of protection supporting a critical role for CD8+ T cells in the early protective efficacy of MVA-ZIKV. Neutralizing antibody responses were induced later than the CD8+ T cell responses, suggesting that it may play a role in later stages of infection. Our results suggest that MVA-ZIKV induces potent anamnestic cellular immunity early after infection, contributing to its protective efficacy against rapid ZIKV challenge.
Responses