Related Articles

Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia

X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.

Quantifying vitamin D intake among Aboriginal and Torres Strait Islander peoples in Australia

Vitamin D deficiency (serum 25-hydroxyvitamin D [25(OH)D] concentration < 50 nmol/L) is prevalent among Aboriginal and Torres Strait Islander peoples in Australia. Alternative to sun exposure (the primary source of vitamin D), vitamin D can also be obtained from food (e.g. fish, eggs, and meat) and supplements. However, the vitamin D intake of this population group is unknown. We aimed to provide the first quantification of vitamin D intake using nationally representative data from Aboriginal and Torres Strait Islander peoples.

A polyketide-based biosynthetic platform for diols, amino alcohols and hydroxy acids

Medium- and branched-chain diols and amino alcohols are important industrial solvents, polymer building blocks, cosmetics and pharmaceutical ingredients, yet biosynthetically challenging to produce. Here we present an approach that uses a modular polyketide synthase (PKS) platform for the efficient production of these compounds. This platform takes advantage of a versatile loading module from the rimocidin PKS and nicotinamide adenine dinucleotide phosphate-dependent terminal thioreductases. Reduction of the terminal aldehyde with alcohol dehydrogenases enables the production of diols, oxidation enables the production of hydroxy acids and specific transaminases allow the production of various amino alcohols. Furthermore, replacement of the malonyl-coenzyme A-specific acyltransferase in the extension module with methyl- or ethylmalonyl-coenzyme A-specific acyltransferase enables the production of branched-chain diols, amino alcohols and carboxylic acids in high titres. Use of our PKS platform in Streptomyces albus demonstrated the high tunability and efficiency of the platform.

Rational engineering of a thermostable α-oxoamine synthase biocatalyst expands the substrate scope and synthetic applicability

Carbon-carbon bond formation is one of the key pillars of organic synthesis. Green, selective and efficient biocatalytic methods for such are therefore highly desirable. The α-oxoamine synthases (AOSs) are a class of pyridoxal 5’-phosphate (PLP)-dependent, irreversible, carbon-carbon bond-forming enzymes, which have been limited previously by their narrow substrate specificity and requirement of acyl-CoA thioester substrates. We recently characterized a thermophilic enzyme from Thermus thermophilus (ThAOS) with a much broader substrate scope and described its use in a chemo-biocatalytic cascade process to generate pyrroles in good yields and timescales. Herein, we report the structure-guided engineering of ThAOS to arrive at variants able to use a greatly expanded range of amino acid and simplified N-acetylcysteamine (SNAc) acyl-thioester substrates. The crystal structure of the improved ThAOS V79A variant with a bound PLP:l-penicillamine external aldimine ligand, provides insight into the properties of the engineered biocatalyst.

Responses

Your email address will not be published. Required fields are marked *