Related Articles
Mechanisms of electrochemical hydrogenation of aromatic compound mixtures over a bimetallic PtRu catalyst
Efficient electrochemical hydrogenation (ECH) of organic compounds is essential for sustainability, promoting chemical feedstock circularity and synthetic fuel production. This study investigates the ECH of benzoic acid, phenol, guaiacol, and their mixtures, key components in upgradeable oils, using a carbon-supported PtRu catalyst under varying initial concentrations, temperatures, and current densities. Phenol achieved the highest conversion (83.17%) with a 60% Faradaic efficiency (FE). In mixtures, benzoic acid + phenol yielded the best performance (64.19% conversion, 74% FE), indicating a synergistic effect. Notably, BA consistently exhibited 100% selectivity for cyclohexane carboxylic acid (CCA) across all conditions. Density functional theory (DFT) calculations revealed that parallel adsorption of BA on the cathode (−1.12 eV) is more stable than perpendicular positioning (-0.58 eV), explaining the high selectivity for CCA. These findings provide a foundation for future developments in ECH of real pyrolysis oil.
Strong-weak dual interface engineered electrocatalyst for large current density hydrogen evolution reaction
Supported nanocatalysts are crucial for hydrogen production, yet their activity and stability are challenging to manage due to complex metal-support interfaces. Herein, we design Pt@ anatase&rutile-TiO2 with a strong-weak dual interface by modifying TiO2 using high-energy ball milling and in-situ reduction to vary surface energies. Experiments and density functional theory calculations reveal that the strong Pt-anatase TiO2 interface enhances hydrogen adsorption. In contrast, the weak Pt-rutile TiO2 interface facilitates hydrogen desorption, simultaneously preventing Pt agglomeration and increasing reaction rate. As a result, the tailored catalyst has a 529.3 mV overpotential at 1000 mA cm−2 in 0.5 M H2SO4, 0.69 times less than commercial Pt/C. It also possesses 8.8 times the mass activity of commercial Pt/C and maintains a low overpotential after 2000 cyclic voltammetry cycles, suggesting high activity and stability. This strong-weak dual interface engineering strategy shows potential for overall water splitting and proton exchange membrane water electrolyzer, advancing the design of efficient supported nanocatalysts.
Bicomponent nano- and microfiber aerogels for effective management of junctional hemorrhage
Managing junctional hemorrhage is challenging due to ineffective existing techniques, with the groin being the most common site, accounting for approximately 19.2% of potentially survivable field deaths. Here, we report a bicomponent nano- and microfiber aerogel (NMA) for injection into deep, narrow junctional wounds to effectively halt bleeding. The aerogel comprises intertwined poly(lactic acid) nanofibers and poly(ε-caprolactone) microfibers, with mechanical properties tunable through crosslinking. Optimized aerogels demonstrate improved resilience, toughness, and elasticity, enabling rapid re-expansion upon blood contact. They demonstrate superior blood absorption and clotting efficacy compared to commercial products (i.e., QuikClot® Combat Gauze and XStat®). Most importantly, in a lethal swine junctional wound model (Yorkshire swine, both male and female, n = 5), aerogel treatment achieved immediate hemostasis, a 100% survival rate, no rebleeding, hemodynamic stability, and stable coagulation, hematologic, and arterial blood gas testing.
Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-3 and Delftia sp. DT-2, that engage in a two-tiered mutualism. Strain BP-3 has low utilization ability of pyruvic acid while strain DT-2 lacks hexokinase, lacks a phosphotransferase system, and is defective in glucose utilization. When strain BP-3 is grown in isolation with glucose, it releases pyruvic acid to the environment resulting in acidification and eventual self-killing. However, when strain BP-3 is grown together with strain DT-2, strain DT-2 utilizes the released pyruvic acid to meet its energy requirements, consequently rescuing strain BP-3 from pyruvic acid-induced growth inhibition. The two bacteria further enhance their collective competitiveness against other microbes by using arsenic as a weapon. Strain DT-2 reduces relatively non-toxic methylarsenate [MAs(V)] to highly toxic methylarsenite [MAs(III)], which kills or suppresses competitors, while strain BP-3 detoxifies MAs(III) by methylation to non-toxic dimethylarsenate [DMAs(V)]. These two arsenic transformations are enhanced when strains DT-2 and BP-3 are grown together. The two strains, along with their close relatives, widely co-occur in soils and their abundances increase with the soil arsenic concentration. Our results reveal that these bacterial types employ a two-tiered mutualism to ensure their collective metabolic activity and maintain their ecological competitive against other soil microbes. These findings shed light on the intricateness of bacterial interactions and their roles in ecosystem functioning.
Altermagnetism, piezovalley, and ferroelectricity in two-dimensional Cr2SeO altermagnet
The study on altermagnet is receiving extensive research efforts due to its directional-dependent spin-polarized band structure. Here, we investigate the multifunctional properties of the Janus Cr2SeO monolayer system. The Cr2SeO monolayer exhibits an in-plane magnetic anisotropy energy of -0.28 meV/cell and a Neel temperature of around 280 K, which is further enhanced to 315 K under 1% uniaxial compressive strain. The Janus Cr2SeO exhibits spin band inversion with a large spin splitting of 0.38 eV at the Y and X high-symmetry points. Nonetheless, the valleys are degenerated due to the diagonal mirror symmetry. The uniaxial strain effectively breaks the diagonal mirror symmetry in the Janus Cr2SeO monolayer, and the strain-induced valley polarization of up to 90 meV is achieved. Furthermore, the uniaxial strain tunes the band gap between 0.30 eV to 0.76 eV. Moreover, Cr2SeO demonstrates ferroelectricity, with a total electric polarization of 5.34 pC/m, which increases to 5.52 pC/m under small uniaxial strain. Besides, we found a large vertical piezoelectric coefficient d31 of 1.18 pm/V. Our study suggests that the Janus Cr2SeO is a promising platform for Valleytronics and ferroelectric memory applications at room temperature.
Responses