Related Articles
Mechanisms of electrochemical hydrogenation of aromatic compound mixtures over a bimetallic PtRu catalyst
Efficient electrochemical hydrogenation (ECH) of organic compounds is essential for sustainability, promoting chemical feedstock circularity and synthetic fuel production. This study investigates the ECH of benzoic acid, phenol, guaiacol, and their mixtures, key components in upgradeable oils, using a carbon-supported PtRu catalyst under varying initial concentrations, temperatures, and current densities. Phenol achieved the highest conversion (83.17%) with a 60% Faradaic efficiency (FE). In mixtures, benzoic acid + phenol yielded the best performance (64.19% conversion, 74% FE), indicating a synergistic effect. Notably, BA consistently exhibited 100% selectivity for cyclohexane carboxylic acid (CCA) across all conditions. Density functional theory (DFT) calculations revealed that parallel adsorption of BA on the cathode (−1.12 eV) is more stable than perpendicular positioning (-0.58 eV), explaining the high selectivity for CCA. These findings provide a foundation for future developments in ECH of real pyrolysis oil.
Hot beverage intake and oesophageal cancer in the UK Biobank: prospective cohort study
Drinking maté, a type of tea consumed at a very hot temperature in South America has been considered as a risk factor for oesophageal squamous cell carcinoma (ESCC).
Enhanced risk of hot extremes revealed by observation-constrained model projections
The increasing frequency of extreme hot events poses significant societal and scientific challenges due to their adverse impacts on human and natural systems, compounded by their unpredictable nature. Climate models are essential for investigating root causes and anticipating long-term changes, yet their accuracy is limited by inherent uncertainties and errors. While observational constraint theories offer promise in addressing model issues, they often rely on empirical region-specific relationships. Here, we show that future changes in hot extremes and their uneven spread critically depend on historical thermal distributions, with variability playing a key role. We develop a universal analytical approach that combines observations with model outcomes, aiming for more reliable projections. Results reveal that hot event probabilities may grow faster than models imply across much of the global land. In vulnerable regions, increases could exceed model predictions by nearly twofold, even at low global warming levels. These findings lay the groundwork for realistic risk assessments and emphasise the need for strengthened adaptation and mitigation efforts.
Imaging molecular structures and interactions by enhanced confinement effect in electron microscopy
Atomic imaging of molecules and intermolecular interactions are of great significance for a deeper understanding of the basic physics and chemistry in various applications, but it is still challenging in electron microscopy due to their thermal mobility and beam sensitivity. Confinement effect and low-dose imaging method may efficiently help us achieve stable high-resolution resolving of molecules and their interactions. Here, we propose a general strategy to image the confined molecules and evaluate the strengths of host-guest interactions in three material systems by low-dose electron microscopy. Then, we change the guest molecules to analyze how each kind of interaction strength influences the imaging quality of these molecules by using a same parameter, the aspect ratios of imaged molecular projections. In the material systems of perovskites (ionic) and zeolites with adsorbed molecules (van der Waals), we can obtain a clear image of molecular configurations by enhancing host-guest interactions. Even in metal organic framework (coordination) system, the atomic structures and bonds of aromatics can be achieved. These results provide a general description on the relation between molecular images and interactions, making it possible to study more molecular behaviors in wide applications by real-space imaging.
Solar-driven interfacial evaporation technologies for food, energy and water
Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.
Responses