Related Articles

A capless hairpin-protected mRNA vaccine encoding the full-length Influenza A hemagglutinin protects mice against a lethal Influenza A infection

The success of mRNA vaccines in controlling the COVID 19 pandemic has confirmed the efficacy of synthetically synthesized mRNA in humans and has also provided a blueprint on how to design them in terms of molecular structure and cost. We describe a mRNA vector that, unlike linear mRNAs used in current vaccines/therapeutics, does not require a 5′ cap to function. The described mRNA vector initiates translation from an internal ribosomal entry site (IRES) and contains specially designed self-folding secondary structures (hairpins) to protect the 5′ end against degradation, dramatically improving its stability. The produced mRNA did not require any additional modifications for functionality. The 5′ hairpins completely inhibited cap-dependent translation, and all vectors containing them required an IRES to express protein. When this capless mRNA vector was constructed to express the full-length Influenza A membrane protein hemagglutinin (HA), complexed with pre-formed lipid-based nanoparticles, and then injected into mice as a vaccine, it generated high titers of anti-HA antibodies and protected mice against a lethal dose of Influenza A.

Circular RNAs in neurological conditions – computational identification, functional validation, and potential clinical applications

Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer’s disease, and Parkinson’s disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.

Dact1 induces Dishevelled oligomerization to facilitate binding partner switch and signalosome formation during convergent extension

Convergent extension (CE) is a universal morphogenetic engine that promotes polarized tissue extension. In vertebrates, CE is regulated by non-canonical Wnt ligands signaling through “core” proteins of the planar cell polarity (PCP) pathway, including the cytoplasmic protein Dishevelled (Dvl), receptor Frizzled (Fz) and tetraspan protein Van gogh-like (Vangl). PCP was discovered in Drosophila to coordinate polarity in the plane of static epithelium, but does not regulate CE in flies. Existing evidence suggests that adopting PCP for CE might be a vertebrate-specific adaptation with incorporation of new regulators. Herein we use Xenopus to investigate Dact1, a chordate-specific protein. Dact1 induces Dvl to form oligomers that dissociate from Vangl, but stay attached with Fz as signalosome-like clusters and co-aggregate with Fz into protein patches upon non-canonical Wnt induction. Functionally, Dact1 antagonizes Vangl, and synergizes with wild-type Dvl but not its oligomerization-defective mutants. We propose that, by promoting Dvl oligomerization, Dact1 couples Dvl binding partner switch with signalosome-like cluster formation to initiate non-canonical Wnt signaling during vertebrate CE.

The integrated stress response pathway controls cytokine production in tissue-resident memory CD4+ T cells

Tissue-resident memory T (TRM) cells are a specialized T cell population that reside in tissues and provide a rapid protective response upon activation. Here, we showed that human and mouse CD4+ TRM cells existed in a poised state and stored messenger RNAs encoding proinflammatory cytokines without protein production. At steady state, cytokine mRNA translation in TRM cells was suppressed by the integrated stress response (ISR) pathway. Upon activation, the central ISR regulator, eIF2α, was dephosphorylated and stored cytokine mRNA was translated for immediate cytokine production. Genetic or pharmacological activation of the ISR–eIF2α pathway reduced cytokine production and ameliorated autoimmune kidney disease in mice. Consistent with these results, the ISR pathway in CD4+ TRM cells was downregulated in patients with immune-mediated diseases of the kidney and the intestine compared to healthy controls. Our results indicated that stored cytokine mRNA and translational regulation in CD4+ TRM cells facilitate rapid cytokine production during local immune response.

Anionic lipids direct efficient microfluidic encapsulation of stable and functionally active proteins in lipid nanoparticles

Because proteins do not efficiently pass through the plasma membrane, protein therapeutics are limited to target ligands located at the cell surface or in serum. Lipid nanoparticles can facilitate delivery of polar molecules across a membrane. We hypothesized that because most proteins are amphoteric ionizable polycations, proteins would associate with anionic lipids, enabling microfluidic chip assembly of stable EP-LNPs (Encapsulated Proteins in Lipid NanoParticles). Here, by employing anionic lipids we were able to efficiently load proteins into EP-LNPs at protein:lipid w:w ratios of 1:20. Several proteins with diverse molecular weights and isoelectric points were encapsulated at efficiencies of 70 75%–90% and remained packaged for several months. Proteins packaged in EP-LNPs efficiently entered mammalian cells and fungal cells with cell walls. The proteins delivered intracellularly were functional. EP-LNPs technology should improve cellular delivery of medicinal antibodies, enzymes, peptide antimetabolites, and dominant negative proteins, opening new fields of protein therapeutics

Responses

Your email address will not be published. Required fields are marked *