Related Articles
Structural insights into spliceosome fidelity: DHX35–GPATCH1- mediated rejection of aberrant splicing substrates
The spliceosome, a highly dynamic macromolecular assembly, catalyzes the precise removal of introns from pre-mRNAs. Recent studies have provided comprehensive structural insights into the step-wise assembly, catalytic splicing and final disassembly of the spliceosome. However, the molecular details of how the spliceosome recognizes and rejects suboptimal splicing substrates remained unclear. Here, we show cryo-electron microscopy structures of spliceosomal quality control complexes from a thermophilic eukaryote, Chaetomium thermophilum. The spliceosomes, henceforth termed B*Q, are stalled at a catalytically activated state but prior to the first splicing reaction due to an aberrant 5’ splice site conformation. This state is recognized by G-patch protein GPATCH1, which is docked onto PRP8-EN and -RH domains and has recruited the cognate DHX35 helicase to its U2 snRNA substrate. In B*Q, DHX35 has dissociated the U2/branch site helix, while the disassembly helicase DHX15 is docked close to its U6 RNA 3’-end substrate. Our work thus provides mechanistic insights into the concerted action of two spliceosomal helicases in maintaining splicing fidelity by priming spliceosomes that are bound to aberrant splice substrates for disassembly.
The antitumor activity of TGFβ-specific T cells is dependent on IL-6 signaling
Although interleukin (IL)-6 is considered immunosuppressive and tumor-promoting, emerging evidence suggests that it may support antitumor immunity. While combining immune checkpoint inhibitors (ICIs) and radiotherapy in patients with pancreatic cancer (PC) has yielded promising clinical results, the addition of an anti-IL-6 receptor (IL-6R) antibody has failed to elicit clinical benefits. Notably, a robust TGFβ-specific immune response at baseline in PC patients treated solely with ICIs and radiotherapy correlated with improved survival. Recent preclinical studies demonstrated the efficacy of a TGFβ-based immune modulatory vaccine in controlling PC tumor growth, underscoring the important role of TGFβ-specific immunity in PC. Here, we explored the importance of IL-6 for TGFβ-specific immunity in PC. In a murine model of PC, coadministration of the TGFβ-based immune modulatory vaccine with an anti-IL-6R antibody rendered the vaccine ineffective. IL-6R blockade hampered the development of vaccine-induced T-cells and tumoral T-cell infiltration. Furthermore, it impaired the myeloid population, resulting in increased tumor-associated macrophage infiltration and an enhanced immunosuppressive phenotype. In PC patients, in contrast to those receiving only ICIs and radiotherapy, robust TGFβ-specific T-cell responses at baseline did not correlate with improved survival in patients receiving ICIs, radiotherapy and IL-6R blockade. Peripheral blood immunophenotyping revealed that IL-6R blockade altered the T-cell and monocytic compartments, which was consistent with the findings in the murine model. Our data suggest that the antitumor efficacy of TGFβ-specific T cells in PC depends on the presence of IL-6 within the tumor. Consequently, caution should be exercised when employing IL-6R blockade in patients receiving cancer immunotherapy.
Structural basis for intrinsic strand displacement activity of mitochondrial DNA polymerase
Members of the Pol A family of DNA polymerases, found across all domains of life, utilize various strategies for DNA strand separation during replication. In higher eukaryotes, mitochondrial DNA polymerase γ relies on the replicative helicase TWINKLE, whereas the yeast ortholog, Mip1, can unwind DNA independently. Using Mip1 as a model, we present a series of high-resolution cryo-EM structures that capture the process of DNA strand displacement. Our data reveal previously unidentified structural elements that facilitate the unwinding of the downstream DNA duplex. Yeast cells harboring Mip1 variants defective in strand displacement exhibit impaired oxidative phosphorylation and loss of mtDNA, corroborating the structural observations. This study provides a molecular basis for the intrinsic strand displacement activity of Mip1 and illuminates the distinct unwinding mechanisms utilized by Pol A family DNA polymerases.
Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
On-chip solar power source for self-powered smart microsensors in bulk CMOS process
Enhancing the photoelectric conversion efficiency of on-chip solar cells is crucial for advancing solar energy harvesting in self-powered smart microsensors for Internet of Things applications. Here we show that adopting a center electrode (CE) layout instead of a ring electrode (RE) effectively reduces the shadowing effect of surface electrodes. Using a standard 0.18 μm CMOS process, we fabricated a 0.01 mm² segmented triple-well on-chip solar cell with CEs and highly doped interconnections. Measurements demonstrate a photoelectric conversion efficiency of 25.79% under solar simulator illumination, a 17.49% improvement over conventional designs. This on-chip solar cell is used for on-chip energy harvesting, achieving a maximum end-to-end conversion efficiency of 10.20%, referring to the overall efficiency from incident light power to load power output. The proposed energy harvesting system reliably provides a stable 1 V output to the load, even under varying illumination and load conditions.
Responses