Related Articles
Solar-driven interfacial evaporation technologies for food, energy and water
Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.
Impact of transboundary water flows on quality-induced water pressure in China
Quality-induced water pressure (P) is gaining increased attention. With the flows of transboundary water, P can be transferred among upstream and downstream regions. Here, we quantified the magnitude of pollutant transmission, and assessed its impact on individual provinces in China. On the annual basis, P was mitigated in 61% of provinces for Chemical Oxygen Demand, 87% for Ammonia Nitrogen, and 84% for Total Phosphorus, while it was intensified for 77% for Total Nitrogen in 2021. The aggregated P were mitigated in 68% of provinces, while intensified in 32% provinces. Furthermore, the monthly assessment has found that the impact of transboundary water on P varies seasonally, generally alleviating in winter and exacerbating in summer. This fluctuation was attributed to the comparatively higher quality of transboundary inflows during winter relative to local water quality. This study provides a scientific foundation for effective water management and quality control.
Programmable electron-induced color router array
The development of color routers (CRs) realizes the splitting of dichromatic components, contributing to the modulation of photon momentum that acts as the information carrier for optical information technology on the frequency and spatial domains. However, CRs with optical stimulation lack active control of photon momentum at deep subwavelength scale because of the optical diffraction limit. Here, we experimentally demonstrate an active manipulation of dichromatic photon momentum at a deep subwavelength scale via electron-induced CRs, where the CRs radiation patterns are manipulated by steering the electron impact position within 60 nm in a single nanoantenna unit. Moreover, an encrypted display device based on programmable modulation of the CR array is designed and implemented. This approach with enhanced security, large information capacity, and high-level integration at a deep subwavelength scale may find applications in photonic devices and emerging areas in quantum information technologies.
Brine management with zero and minimal liquid discharge
Zero liquid discharge (ZLD) and minimal liquid discharge (MLD) are brine management approaches that aim to reduce the environmental impacts of brine discharge and recover water for reuse. ZLD maximizes water recovery and avoids the needs for brine disposal, but is expensive and energy-intensive. MLD (which reduces the brine volume and recovers some water) has been proposed as a practical and cost-effective alternative to ZLD, but brine disposal is needed. In this Review, we examine the concepts, technologies and industrial applications of ZLD and MLD. These brine management strategies have current and potential applications in the desalination, energy, mining and semiconductor industries, all of which produce large volumes of brine. Brine concentration and crystallization in ZLD and MLD often rely on mechanical vapour compression and thermal crystallizers, which are effective but energy-intensive. Novel engineered systems for brine volume reduction and crystallization are under active development to achieve MLD and/or ZLD. These emerging systems, such as membrane distillation, electrodialytic crystallization and solvent extraction desalination, still face challenges to outcompete mechanical vapour compression and thermal crystallizers, underscoring the critical need to maximize the full potential of reverse osmosis to attain ultrahigh water recovery. Brine valorization has potential to partially offset the cost of ZLD and MLD, provided that resource recovery can be integrated into treatment trains economically and in accordance with regulations.
Directed synthesis of N1/N3-histidine modified by 2-hydroxyethylthioethyl and identification in sulfur mustard-exposed plasma
Sulfur mustard (HD) alkylates biomolecules such as proteins, generating specific biomarkers. This study employs steric hindrance, electronic effects, and solvent effects through an occupancy-removal strategy to synthesize regioisomers [N1-HETE]-His and [N3-HETE]-His, overcoming isomer separation challenges in conventional methods. Density functional theory (DFT) calculations revealed hexafluoroisopropanol (HFIP)’s critical role in directing HD’s regioselective alkylation: HFIP modulates steric and electronic environments to preferentially target N1 or N3 sites of histidine imidazole rings, with predictions validated experimentally. The method further enables selective detection of the isomers in HD-contaminated plasma via standard addition, advancing absolute quantification. This work not only establishes a precision synthesis platform for biomarkers but also elucidates HFIP’s unique role in imidazole regioselectivity, offering insights for medicinal chemistry and HD toxicology. These findings hold implications for HD exposure tracking, mechanism analysis, clinical diagnostics, and antidote development.
Responses