Related Articles

Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer

The liver is a unique organ where immunity can be biased toward ineffective response notably in the context of viral infections. Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. In the case of recombinant Adeno-Associated-Virus, used for therapeutic gene transfer, conflicting reports describe tolerance induction to different transgene products while other studies have shown conventional cytotoxic CD8+ T cell responses with a rapid loss of transgene expression. We performed a 1 year follow up of 6 non-human primates after all animals received an rAAV8 vector carrying the GFP transgene at doses of 7×1012 vg/kg. We report that despite anti-GFP peripheral cellular response and loss of hepatic transgene expression, we were still able to detect persisting viral genomes in the liver until 1-year post-injection. These viral genomes were associated with liver inflammation, fibrosis and signs of CD8 T cell exhaustion, including high expression of PD-1. Our study shows that AAV8-mediated gene transfer can results to loss of transgene expression in liver and chronic inflammation several months after gene transfer.

AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion

Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.

MAPK13 phosphorylates PHGDH and promotes its degradation via chaperone-mediated autophagy during liver injury

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and poses a significant clinical challenge in both diagnosis and treatment. Serine synthesis pathway (SSP) links glycolysis to one-carbon cycle and plays an important role in cell homeostasis by regulating substance synthesis, redox homeostasis and gene expression. However, the regulatory mechanism of SSP in DILI remains unclear. Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in SSP. Here we show that during DILI, mitogen-activated protein kinase 13 (MAPK13) is activated and then phosphorylates PHGDH at serine 371 upon oxidative stress, which triggers PHGDH protein degradation via chaperone-mediated autophagy (CMA) pathway. PHGDH degradation suppresses SSP and glutathione production, thereby exacerbating DILI and cholestatic liver injury. Importantly, both MAPK13 inhibition and dietary serine supplementation ameliorates these liver injuries. Our finding demonstrates a unique regulatory mechanism of SSP, in which MAPK13 phosphorylates PHGDH and promotes its CMA degradation, establishes its critical role in DILI and cholestatic liver injury, and highlights the therapeutic potential of MAPK13 inhibitor or dietary serine to treat these liver injuries.

Engineered EVs from LncEEF1G – overexpressing MSCs promote fibrotic liver regeneration by upregulating HGF release from hepatic stellate cells

Fibrosis is a disease that negatively affects liver regeneration, resulting in severe complications after liver surgery. However, there is still no clinically effective treatment for promoting fibrotic liver regeneration because the underlying hepatocellular mechanism remains poorly understood. Through microRNA microarrays combined with the application of AAV6, we found that high expression of miR-181a-5p in activated hepatic stellate cells (HSCs) suppressed the expression of hepatic growth factor (HGF) and partially contributed to impaired regeneration potential in mice with hepatic fibrosis that had undergone two-thirds partial hepatectomy. As nanotherapeutics, mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been verified as effective treatments for liver regeneration. Here we observe that MSC-EVs can also promote fibrotic liver regeneration via enriched lncEEF1G, which acts as a competing endogenous RNA to directly sponge miR-181a-5p, leading to the upregulated expression of HGF in HSCs. Finally, engineered MSC-EVs with high expression of lncEEF1G (lncEEF1GOE-EVs) were constructed, suggesting greater potential for this model. In summary, our findings indicate that lncEEF1GOE-EVs have a nanotherapeutic effect on promoting regeneration of fibrotic livers by modulating the miR-181a-5p/HGF pathway in HSCs, which highlights the potential of extracellular vesicle engineering technology for patients with hepatic fibrosis who have undergone hepatic surgery.

Responses

Your email address will not be published. Required fields are marked *