Related Articles

Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales

Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.

Using twin-pairs to assess potential bias in polygenic prediction of externalising behaviours across development

Prediction from polygenic scores may be confounded by sources of passive gene-environment correlation (rGE; e.g. population stratification, assortative mating, and environmentally mediated effects of parental genotype on child phenotype). Using genomic data from 10 000 twin pairs, we asked whether polygenic scores from the most recent externalising genome-wide association study predict conduct problems, ADHD symptomology and callous-unemotional traits, and whether these predictions are biased by rGE. We ran regression models including within-family and between-family polygenic scores, to separate the direct genetic influence on a trait from environmental influences that correlate with genes (indirect genetic effects). Findings suggested that this externalising polygenic score is a good index of direct genetic influence on conduct and ADHD-related symptoms across development, with minimal bias from rGE, although the polygenic score predicted less variance in CU traits. Post-hoc analyses showed some indirect genetic effects acting on a common factor indexing stability of conduct problems across time and contexts.

Associations between common genetic variants and income provide insights about the socio-economic health gradient

We conducted a genome-wide association study on income among individuals of European descent (N = 668,288) to investigate the relationship between socio-economic status and health disparities. We identified 162 genomic loci associated with a common genetic factor underlying various income measures, all with small effect sizes (the Income Factor). Our polygenic index captures 1–5% of income variance, with only one fourth due to direct genetic effects. A phenome-wide association study using this index showed reduced risks for diseases including hypertension, obesity, type 2 diabetes, depression, asthma and back pain. The Income Factor had a substantial genetic correlation (0.92, s.e. = 0.006) with educational attainment. Accounting for the genetic overlap of educational attainment with income revealed that the remaining genetic signal was linked to better mental health but reduced physical health and increased risky behaviours such as drinking and smoking. These findings highlight the complex genetic influences on income and health.

Evolution, genetic diversity, and health

Human genetic diversity in today’s world has been shaped by evolutionary history, demographic shifts and environmental exposures, influencing complex traits, disease susceptibility and drug responses. Capturing this diversity is essential for advancing precision medicine and promoting equitable healthcare. Despite the great progress achieved with initiatives such as the human Pangenome and large biobanks that aim for a better representation of human diversity, important challenges remain. In this Perspective, we discuss the importance of diversity in clinical genomics through an evolutionary lens. We highlight progress and challenges and outline key clinical applications of diverse genetic data. We argue that diversifying both datasets and methodologies—integrating ancestral and environmental factors—is crucial for fully understanding the genetic basis of human health and disease.

Perceptual and semantic maps in individual humans share structural features that predict creative abilities

Building perceptual and associative links between internal representations is a fundamental neural process, allowing individuals to structure their knowledge about the world and combine it to enable efficient and creative behavior. In this context, the representational similarity between pairs of represented entities is thought to reflect their associative linkage at different levels of sensory processing, ranging from lower-order perceptual levels up to higher-order semantic levels. While recently specific structural features of semantic representational maps were linked with creative abilities of individual humans, it remains unclear if these features are also shared on lower level, perceptual maps. Here, we address this question by presenting 148 human participants with psychophysical scaling tasks, using two sets of independent and qualitatively distinct stimuli, to probe representational map structures in the lower-order auditory and the higher-order semantic domain. We quantify individual representational features with graph-theoretical measures and demonstrate a robust correlation of representational structures in the perceptual auditory and semantic modality. We delineate these shared representational features to predict multiple verbal standard measures of creativity, observing that both, semantic and auditory features, reflect creative abilities. Our findings indicate that the general, modality-overarching representational geometry of an individual is a relevant underpinning of creative thought.

Responses

Your email address will not be published. Required fields are marked *