Related Articles
Abundant Sulfitobacter marine bacteria protect Emiliania huxleyi algae from pathogenic bacteria
Emiliania huxleyi is a unicellular micro-alga that forms massive oceanic blooms and plays key roles in global biogeochemical cycles. Mounting studies demonstrate various stimulatory and inhibitory influences that bacteria have on the E. huxleyi physiology. To investigate these algal-bacterial interactions, laboratory co-cultures have been established by us and by others. Owing to these co-cultures, various mechanisms of algal-bacterial interactions have been revealed, many involving bacterial pathogenicity towards algae. However, co-cultures represent a significantly simplified system, lacking the complexity of bacterial communities. In order to investigate bacterial pathogenicity within an ecologically relevant context, it becomes imperative to enhance the microbial complexity of co-culture setups. Phaeobacter inhibens bacteria are known pathogens that cause the death of E. huxleyi algae in laboratory co-culture systems. The bacteria depend on algal exudates for growth, but when algae senesce, bacteria switch to a pathogenic state and induce algal death. Here we investigate whether P. inhibens bacteria can induce algal death in the presence of a complex bacterial community. We show that an E. huxleyi-associated bacterial community protects the alga from the pathogen, although the pathogen occurs within the community. To study how the bacterial community regulates pathogenicity, we reduced the complex bacterial community to a five-member synthetic community (syncom). The syncom is comprised of a single algal host and five isolated bacterial species, which represent major bacterial groups that are naturally associated with E. huxleyi. We discovered that a single bacterial species in the reduced community, Sulfitobacter pontiacus, protects the alga from the pathogen. We further found that algal protection from P. inhibens pathogenicity is a shared trait among several Sulfitobacter species. Algal protection by bacteria might be a common phenomenon with ecological significance, which is overlooked in reduced co-culture systems.
Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness
Coevolution of bacteria and phages is an important host and parasite dynamic in marine ecosystems, contributing to the understanding of bacterial community diversity. On the time scale, questions remain concerning what is the difference between phage resistance patterns in marine bacteria and how advantageous mutations gradually accumulate during coevolution. In this study, marine Aeromonas was co-cultured with its phage for 180 days and their genetic and phenotypic dynamics were measured every 30 days. We identified 11 phage resistance genes and classified them into three categories: lipopolysaccharide (LPS), outer membrane protein (OMP), and two-component system (TCS). LPS shortening and OMP mutations are two distinct modes of complete phage resistance, while TCS mutants mediate incomplete resistance by repressing the transcription of phage genes. The co-mutation of LPS and OMP was a major mode for bacterial resistance at a low cost. The mutations led to significant reductions in the growth and virulence of bacterial populations during the first 60 days of coevolution, with subsequent leveling off. Our findings reveal the marine bacterial community dynamics and evolutionary trade-offs of phage resistance during coevolution, thus granting further understanding of the interaction of marine microbes.
Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum
The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.
Single cell dynamics and nitrogen transformations in the chain forming diatom Chaetoceros affinis
Colony formation in phytoplankton is often considered a disadvantage during nutrient limitation in aquatic systems. Using stable isotopic tracers combined with secondary ion mass spectrometry (SIMS), we unravel cell-specific activities of a chain-forming diatom and interactions with attached bacteria. The uptake of 13C-bicarbonate and15N-nitrate or 15N-ammonium was studied in Chaetoceros affinis during the stationary growth phase. Low cell-to-cell variance of 13C-bicarbonate and 15N-nitrate assimilation within diatom chains prevailed during the early stationary phase. Up to 5% of freshly assimilated 13C and 15N was detected in attached bacteria within 12 h and supported bacterial C- and N-growth rates up to 0.026 h−1. During the mid-stationary phase, diatom chain-length decreased and 13C and 15N-nitrate assimilation was significantly higher in solitary cells as compared to that in chain cells. During the late stationary phase, nitrate assimilation ceased and ammonium assimilation balanced C fixation. At this stage, we observed highly active cells neighboring inactive cells within the same chain. In N-limited regimes, bacterial remineralization of N and the short diffusion distance between neighbors in chains may support surviving cells. This combination of “microbial gardening” and nutrient transfer within diatom chains represents a strategy which challenges current paradigms of nutrient fluxes in plankton communities.
Sodium oligomannate disrupts the adherence of Ribhigh bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice
Sodium oligomannate (GV-971), an oligosaccharide drug approved in China for treating mild-to-moderate Alzheimer’s disease (AD), was previously found to recondition the gut microbiota and limit altered peripheral Th1 immunity in AD transgenic mice. As a follow-up study, we here made advances by pinpointing a Lactobacillus murinus (L.m.) strain that highly expressed a gene encoding a putative adhesin containing Rib repeats (Ribhigh–L.m.) particularly enriched in 5XFAD transgenic mice. Mechanistically, Ribhigh–L.m. adherence to the gut epithelia upregulated fecal metabolites, among which lactate ranked as the top candidate. Excess lactate stimulated the epithelial production of serum amyloid A (SAA) in the gut via the GPR81-NFκB axis, contributing to peripheral Th1 activation. Moreover, GV-971 disrupted the adherence of Ribhigh–L.m. to gut epithelia via direct binding to Rib, which corrected the excess lactate, reduced SAA, and alleviated Th1-skewed inflammation. Together, we gained further insights into the molecular link between gut bacteria and AD progression and the mechanism of GV-971 in treating AD.
Responses