Related Articles

Perspectives on the physics of late-type stars from beyond low earth orbit, the moon and mars

With the new discoveries enabled thanks to the recent space missions, stellar physics is going through a revolution. However, these discoveries opened the door to many new questions that require more observations. The European Space Agency’s Human and Robotic Exploration program provides an excellent opportunity to push forward the limits of our knowledge and better understand stellar structure and dynamics evolution. Long-term observations, Ultra-Violet observations, and a stellar imager are a few highlights of proposed missions for late-type stars that will enhance the already planned space missions.

Positive impact of sodium L-lactate supplementation on blood acid-base status in preterm newborns

Preclinical studies indicate that lactate is a crucial cerebral energy substrate, with Na-L-lactate administration significantly reducing brain lesion volumes and improving motor and cognitive functions following neonatal hypoxia-ischemia in rat pups. Its neuroprotective effects are linked to neuronal metabolic utilization, making it a promising candidate for treating newborns with hypoxia-ischemia encephalopathy, a condition where hypothermia remains the only established therapy. However, before initiating a clinical trial, it is necessary to assess the effects of Na-L-lactate infusion on blood parameters.

Extreme shape coexistence observed in 70Co

The shape of the atomic nucleus is a property that underpins our understanding of nuclear systems, impacts the limits of nuclear existence, and enables probes of physics beyond the Standard Model. Nuclei can adopt a variety of shapes, including spheres, axially deformed spheroids, and pear shapes. In some regions of the nuclear chart where a spherical nucleus would naively be expected, deformed nuclear states can result from the collective action of constituent protons and neutrons. In a small subset of nuclei both spherical and deformed nuclear states have been experimentally observed, a phenomenon termed shape coexistence. We present spectroscopic evidence for the coexistence of Jπ = 1+ spherical and deformed states in 70Co, separated by less than 275 keV. This close degeneracy of levels with the same Jπ and different shapes demonstrates an extreme example of shape coexistence resulting from the interplay of independent particle motion and collective behavior in highly unstable nuclear systems and identifies the Co isotopes as a transition point between deformed ground states observed in the Cr isotopes and spherical configurations observed in the closed-shell Ni isotopes.

Absence of magnetic order in RuO2: insights from μSR spectroscopy and neutron diffraction

Altermagnets are a novel class of magnetic materials, where magnetic order is staggered both in coordinate and momentum space. The metallic rutile oxide RuO2, long believed to be a textbook Pauli paramagnet, recently emerged as a putative workhorse altermagnet when resonant X-ray and neutron scattering studies reported nonzero magnetic moments and long-range collinear order. While some experiments seem consistent with altermagnetism, magnetic order in RuO2 remains controversial. We show that RuO2 is nonmagnetic, both in bulk and thin film. Muon spectroscopy complemented by density-functional theory finds at most 1.14 × 10−4μB/Ru in bulk and at most 7.5 × 10−4μB/Ru in 11 nm epitaxial films, at our spectrometers’ detection limit, and dramatically smaller than previously reported neutron results that were used to rationalize altermagnetic behavior. Our own neutron diffraction measurements on RuO2 single crystals identify multiple scattering as the source for the false signal in earlier studies.

Responses

Your email address will not be published. Required fields are marked *