Related Articles
Studies on adaptive capacity to climate change: a synthesis of changing concepts, dimensions, and indicators
Adaptive capacity was recognized as one of the critical components of vulnerability assessment in 2001 by the Intergovernmental Panel on Climate Change. Adaptive capacity extends beyond the mere accumulation of resources to encompass the willingness and ability to transform available resources into adaptive actions. In this context, adaptive capacity denotes the ability of social-ecological systems to adjust to the negative effects of environmental change or recovery from it. Hence, enhancing adaptive capacity enriches the ability to cope with a wider spectrum and greater magnitude of climate impacts. Based on the literature review and content analysis, this study explores the foundational concepts of adaptive capacity and further assesses the evolving focus on concept, scale, geographical emphasis, dimensions, and indicators through a systematic review. The findings underscore that adaptive capacity constitutes a multidimensional and interdisciplinary research domain characterized by a range of dimensions and indicators, and diverse methods and techniques at various geographic scales. The study found that adaptive capacity research has predominantly centered on asset-based analyses within the Sustainable Livelihoods Framework in the earlier stage. However, since the past decade, the focus has shifted to indicators like agency, technology, innovation, governance, knowledge, information, and infrastructure, besides climate variability and socio-economic and cultural diversity. It is suggested that to bridge the gap between adaptive capacity and actual adaptation action, policy interventions need to be targeted. The study concludes that, despite abundant research and available literature on climate change and adaptation, there is still a lack of context-specific understanding, particularly from an insider’s perspective in South Asia.
Error-driven upregulation of memory representations
Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.
Dopamine in the tail of the striatum facilitates avoidance in threat–reward conflicts
Responding appropriately to potential threats before they materialize is critical to avoiding disastrous outcomes. Here we examine how threat-coping behavior is regulated by the tail of the striatum (TS) and its dopamine input. Mice were presented with a potential threat (a moving object) while pursuing rewards. Initially, the mice failed to obtain rewards but gradually improved in later trials. We found that dopamine in TS promoted avoidance of the threat, even at the expense of reward acquisition. Furthermore, the activity of dopamine D1 receptor-expressing neurons promoted threat avoidance and prediction. In contrast, D2 neurons suppressed threat avoidance and facilitated overcoming the potential threat. Dopamine axon activation in TS not only potentiated the responses of dopamine D1 receptor-expressing neurons to novel sensory stimuli but also boosted them acutely. These results demonstrate that an opponent interaction of D1 and D2 neurons in the TS, modulated by dopamine, dynamically regulates avoidance and overcoming potential threats.
Targeting a chemo-induced adaptive signaling circuit confers therapeutic vulnerabilities in pancreatic cancer
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC.
Convergent evolution of complex adaptive traits modulates angiogenesis in high-altitude Andean and Himalayan human populations
Convergent adaptations represent paradigmatic examples of the capacity of natural selection to influence organisms’ biology. However, the possibility to investigate the genetic determinants underpinning convergent complex adaptive traits has been offered only recently by methods for inferring polygenic adaptations from genomic data. Relying on this approach, we demonstrate how high-altitude Andean human groups experienced pervasive selective events at angiogenic pathways, which resemble those previously attested for Himalayan populations despite partial convergence at the single-gene level was observed. This provides additional evidence for the drivers of convergent evolution of enhanced blood perfusion in populations exposed to hypobaric hypoxia for thousands of years.
Responses