Related Articles

Donor MHC-specific thymus vaccination allows for immunocompatible allotransplantation

Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%–80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection. We herein present a “donor MHC-specific thymus vaccination” (DMTV) strategy to induce T cell tolerance to both autologous and allogeneic donor MHC. Allogeneic MHC molecules were expressed in the recipient thymus through adeno-associated virus-mediated delivery, which led to stable expression of allogeneic MHC together with the autologous MHC in the engineered thymus. During local T cell education, those T cells recognizing either autologous MHC or allogeneic MHC were equally depleted. We constructed C57BL/6-MHC and BALB/c-MHC dual immunocompatible mice via thymus vaccination of C57BL/6-MHC into the BALB/c thymus and observed long-term graft tolerance after transplantation of C57BL/6 skin and C57BL/6 mouse embryonic stem cells into the vaccinated BALB/c mice. We also validated our DMTV strategy in a bone marrow, liver, thymus (BLT)-humanized mouse model for immunocompatible allotransplantation of human embryonic stem cells. Our study suggests that the DMTV strategy is a potent avenue to introduce a donor compatible immune system in recipients, which overcomes the clinical dilemma of the extreme shortage of MHC-matched donor organs for treating patients with end-stage organ failure.

Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice

Aging is a process accompanied by functional decline in tissues and organs with great social and medical consequences. Developing effective anti-aging strategies is of great significance. In this study, we demonstrated that transplantation of young hematopoietic stem cells (HSCs) into old mice can mitigate aging phenotypes, underscoring the crucial role of HSCs in the aging process. Through comprehensive molecular and functional analyses, we identified a subset of HSCs in aged mice that exhibit “younger” molecular profiles and functions, marked by low levels of CD150 expression. Mechanistically, CD150low HSCs from old mice but not their CD150high counterparts can effectively differentiate into downstream lineage cells. Notably, transplantation of old CD150low HSCs attenuates aging phenotypes and prolongs lifespan of elderly mice compared to those transplanted with unselected or CD150high HSCs. Importantly, reducing the dysfunctional CD150high HSCs can alleviate aging phenotypes in old recipient mice. Thus, our study demonstrates the presence of “younger” HSCs in old mice, and that aging-associated functional decline can be mitigated by reducing dysfunctional HSCs.

The 2023 EBMT report on hematopoietic cell transplantation and cellular therapies. Increased use of allogeneic HCT for myeloid malignancies and of CAR-T at the expense of autologous HCT

In 2023, 47,731 HCT (20,485 (42.9%) allogeneic and 27,246 (57.1%) autologous) in 43,902 patients were reported by 696 European centers. 6042 patients received advanced cellular therapies, 4888 of which were CAR-T. Compared to the previous year there was an increase in CAR-T (+52.5%), in allogeneic HCT (+7.8%) but none in autologous HCT (+0.4%). Main indications for allogeneic HCT were myeloid (11,748; 60.7%), lymphoid malignancies (4,850; 25.0%), and non-malignant disorders (2558; 13.2%). Use of allogeneic HCT increased for AML (+12.1%) and for NHL (+11.0%), particularly in T-NHL (+25.6%). Main indications for autologous HCT were lymphomas (7890; 32.2%), PCD (14,271; 58.2%), and solid tumors (1608; 6.6%) with recovering numbers for autoimmune diseases. In patients with allogeneic HCT, the use of sibling donors increased by +1.0%, haploidentical donors by +11.7%, and unrelated donors by +11.1%. Cord blood HCT decreased again by −5.4%. Pediatric HCT activity increased slightly (5455; +0.1%) with differences between allogeneic (4111; −0.5%) and autologous HCT (1344: +1.7%). Use of CAR-T increased to a cumulative total of 13,927 patients including patients treated for autoimmune diseases. Overall, numbers show a complete recovery from the pandemic dip with increased cellular therapy at the expense of autologous HCT. Allogeneic HCT activity focuses on myeloid malignancies.

Recommendations for mitochondria transfer and transplantation nomenclature and characterization

Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.

Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys

The ovary is crucial for female reproduction and health, as it generates oocytes and secretes sex hormones. Transplantation of mesenchymal stem cells (MSCs) has been shown to alleviate pathological ovarian aging. However, it is unclear whether MSCs could benefit the naturally aging ovary. In this study, we first examined the dynamics of ovarian reserve of Chinese women during perimenopause. Using a naturally aging cynomolgus monkey (Macaca fascicularis) model, we found that transplanting human embryonic stem cells-derived MSC-like cells, which we called M cells, into the aging ovaries significantly decreased ovarian fibrosis and DNA damage, enhanced secretion of sex hormones and improved fertility. Encouragingly, a healthy baby monkey was born after M-cell transplantation. Moreover, single-cell RNA sequencing analysis and in vitro functional validation suggested that apoptosis, oxidative damage, inflammation, and fibrosis were mitigated in granulosa cells and stromal cells following M-cell transplantation. Altogether, these findings demonstrate the beneficial effects of M-cell transplantation on aging ovaries and expand our understanding of the molecular mechanisms underlying ovarian aging and stem cell-based alleviation of this process.

Responses

Your email address will not be published. Required fields are marked *