Related Articles

Solar-driven interfacial evaporation technologies for food, energy and water

Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.

Photo-assisted technologies for environmental remediation

Industrial processes can lead to air and water pollution, particularly from organic contaminants such as toluene and antibiotics, posing threats to human health. Photo-assisted chemical oxidation technologies leverage light energy to mineralize these contaminants. In this Review, we discuss the mechanisms and efficiencies of photo-assisted advanced oxidation processes for wastewater treatment and photothermal technologies for air purification. The integration of solar energy enhances degradation efficiency and reduces energy consumption, enabling more efficient remediation methods. We evaluate the technological aspects of photo-assisted technologies, such as photo-Fenton, photo-persulfate activation, photo-ozonation and photoelectrochemical oxidation, emphasizing their potential for practical applications. Finally, we discuss the challenges in scaling up photo-assisted technologies for specific environmental remediation needs. Photo-assisted technologies have demonstrated effectiveness in environmental remediation, although large-scale applications remain constrained by high costs. Future potential applications of photo-assisted technologies will require that technology selection be tailored to specific pollution scenarios and engineering processes optimized to minimize costs.

Impact of transboundary water flows on quality-induced water pressure in China

Quality-induced water pressure (P) is gaining increased attention. With the flows of transboundary water, P can be transferred among upstream and downstream regions. Here, we quantified the magnitude of pollutant transmission, and assessed its impact on individual provinces in China. On the annual basis, P was mitigated in 61% of provinces for Chemical Oxygen Demand, 87% for Ammonia Nitrogen, and 84% for Total Phosphorus, while it was intensified for 77% for Total Nitrogen in 2021. The aggregated P were mitigated in 68% of provinces, while intensified in 32% provinces. Furthermore, the monthly assessment has found that the impact of transboundary water on P varies seasonally, generally alleviating in winter and exacerbating in summer. This fluctuation was attributed to the comparatively higher quality of transboundary inflows during winter relative to local water quality. This study provides a scientific foundation for effective water management and quality control.

Advancing robust all-weather desalination: a critical review of emerging photothermal evaporators and hybrid systems

All-weather solar-driven desalination systems, integrating photothermal evaporators with hybrid technologies, present a sustainable, cost-effective, and high-efficiency strategy for freshwater production. Despite significant advancements, previous reviews have predominantly focused on daytime evaporation, neglecting the broader scope of all-weather seawater evaporation. This review provides a comprehensive examination of the current status of all-weather seawater evaporators and their hybrid systems. Initially, the review details the system’s composition and operating principles, as well as the design criteria for high-performance evaporators. It then goes over various common photothermal conversion materials for seawater desalination, with a particular emphasis on those materials tailored for all-weather applications. It also offers an in-depth overview to the developed photothermal hybrid systems for all-weather seawater evaporation, including their working principles, the efficiency of evaporation across the day-night cycle, and their practical applications. Lastly, the existing challenges and potential research opportunities are thoroughly discussed.

Chemical linkers switch triglycerol detergents from bacterial protein purification to mild antibiotic amplification

Non-ionic detergents enable the investigation of cell membranes, including biomolecule purification and drug delivery. The question of whether non-ionic detergents associated with satisfying protein yields following extraction and affinity purification of proteins from lysed E. coli membranes can amplify antibiotics on whole-cell E. coli remains to be addressed. We unlock the modular chemistry of linear triglycerol detergents to reveal that more polar, non-ionic detergents that form globular micelles work better in amplifying antimicrobial activities of antibiotics than in purifying the membrane proteins mechanosensitive channel and aquaporin Z. Less polar detergents that form worm-like micelles indicate poor performances in both applications. With chromatography we demonstrate how fine-tuning the polarity of chemical linkers between detergent headgroups and tails can switch the utility of detergents from protein purification to antibiotic amplification. We anticipate our findings to be a starting point for structure-property studies to better understand detergent designs in supramolecular chemistry and membrane research.

Responses

Your email address will not be published. Required fields are marked *