Related Articles
Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.
Hot beverage intake and oesophageal cancer in the UK Biobank: prospective cohort study
Drinking maté, a type of tea consumed at a very hot temperature in South America has been considered as a risk factor for oesophageal squamous cell carcinoma (ESCC).
Insights from a century of data reveal global trends in ex situ living plant collections
Ex situ living plant collections play a crucial role in providing nature-based solutions to twenty-first century global challenges. However, the complex dynamics of these artificial ecosystems are poorly quantified and understood, affecting biodiversity storage, conservation and utilization. To evaluate the management of ex situ plant diversity, we analysed a century of data comprising 2.2 million records, from a meta-collection currently holding ~500,000 accessions and 41% of global ex situ species diversity. Our study provides critical insights into the historical evolution, current state and future trajectory of global living collections. We reveal sigmoidal growth of a meta-collection that has reached capacity in both total accessions and total diversity, and identify intrinsic constraints on biodiversity management, including a median survival probability of 15 years. We explore the impact of external constraints and quantify the influence of the Convention on Biological Diversity, which we link to reduced acquisition of wild-origin and internationally sourced material by 44% and 38%, respectively. We further define the impact of these constraints on ex situ conservation but highlight targeted initiatives that successfully mitigate these challenges. Ultimately, our study underscores the urgent need for strategic prioritization and the re-evaluation of ex situ biodiversity management to achieve both scientific and conservation goals.
Investigating preschool-aged chronotype and social jetlag as predictors of early adolescent diet and BMI z-score: an eight-year follow-up from the DAGIS study
Circadian health plays an important role in overall well-being. The objective of this study was to examine whether potential indicators of circadian disruption, such as exhibiting a later chronotype or greater social jetlag, in preschool-age could predict dietary habits or BMI z-scores in an eight-year follow-up.
High-performance achromatic flat lens by multiplexing meta-atoms on a stepwise phase dispersion compensation layer
Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties, which allows the miniaturization of bulky optical assemblies into integrated planar components. Recent advances in achromatic flat lenses have shown promising applications in various fields. However, it is a significant challenge for achromatic flat lenses with a high numerical aperture to simultaneously achieve broad bandwidth and expand the aperture sizes. Here, we present the zone division multiplex of the meta-atoms on a stepwise phase dispersion compensation (SPDC) layer to address the above challenge. In principle, the aperture size can be freely enlarged by increasing the optical thickness difference between the central and marginal zones of the SPDC layer, without the limit of the achromatic bandwidth. The SPDC layer also serves as the substrate, making the device thinner. Two achromatic flat lenses of 500 nm thickness with a bandwidth of 650–1000 nm are experimentally achieved: one with a numerical aperture of 0.9 and a radius of 20.1 µm, and another with a numerical aperture of 0.7 and a radius of 30.0 µm. To the best of our knowledge, they are the broadband achromatic flat lenses with highest numerical apertures, the largest aperture sizes and thinnest thickness reported so far. Microscopic imaging with a 1.10 µm resolution has also been demonstrated by white light illumination, surpassing any previously reported resolution attained by achromatic metalenses and multi-level diffractive lenses. These unprecedented performances mark a substantial step toward practical applications of flat lenses.
Responses