Effectiveness of virtual-walking intervention combined with exercise on improving pain and function in incomplete spinal cord injury: a feasibility study

Related Articles

Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach

Chronic neuropathic pain is a debilitating neuroplastic disorder that notably impacts the quality of life of millions of people worldwide. This complex condition, encompassing various manifestations, such as sciatica, diabetic neuropathy and postherpetic neuralgia, arises from nerve damage or malfunctions in pain processing pathways and involves various biological, physiological and psychological processes. Maladaptive neuroplasticity, known as central sensitization, plays a critical role in the persistence of chronic neuropathic pain. Current treatments for neuropathic pain include pharmacological interventions (for example, antidepressants and anticonvulsants), invasive procedures (for example, deep brain stimulation) and physical therapies. However, these approaches often have limitations and potential side effects. In light of these challenges, interest in noninvasive neuromodulation techniques as alternatives or complementary treatments for neuropathic pain is increasing. These methods aim to induce analgesia while reversing maladaptive plastic changes, offering potential advantages over conventional pharmacological practices and invasive methods. Recent technological advancements have spurred the exploration of noninvasive neuromodulation therapies, such as repetitive transcranial magnetic stimulation, transcranial direct current stimulation and transcranial ultrasound stimulation, as well as innovative transformations of invasive techniques into noninvasive methods at both the preclinical and clinical levels. Here this review aims to critically examine the mechanisms of maladaptive neuroplasticity in chronic neuropathic pain and evaluate the efficacy of noninvasive neuromodulation techniques in pain relief. By focusing on optimizing these techniques, we can better assess their short-term and long-term effects, refine treatment variables and ultimately improve the quality of neuropathic pain management.

The impact of exercise on sleep and sleep disorders

Regular exercise provides a variety of health benefits, including enhanced sleep quality and reduced symptoms of sleep disorders. The complex interaction between sleep and physical activity involves various physiological and psychological processes. Exercise has a positive effect on sleep, but factors such as age, sex, and fitness level, and specific exercise aspects such as intensity, duration, and timing play crucial roles. Understanding these dynamic interactions is essential to gaining insight into how exercise benefits sleep in both healthy individuals and those with sleep disorders. Given the positive effects of moderate exercise on sleep and its potential as a therapeutic option, this narrative review highlights the extensive benefits of exercise on sleep and underscores its important role in overall health and wellness.

Scalability challenges of machine learning models for estimating walking and cycling volumes in large networks

This study explores the scalability of machine learning models for estimating walking and cycling volumes across the extensive New South Wales (NSW) Six Cities Region in Australia using mobile phone and crowdsourced data. Previous research has focused on localized applications, missing the complexities of larger networks. The research addresses this gap by identifying unique challenges such as the scarcity and representativeness of observed count data, gaps in the crowdsourced and mobile phone data, and inconsistencies in link-level volume estimates. We propose and demonstrate the application of strategies like enhancing geographical diversity of observed count data and employing an extensive cross-validation approach in model training and testing. By leveraging various auxiliary datasets, the study demonstrates the effectiveness of these strategies in improving model performance. These findings provide valuable insights for transportation modelers, policymakers, and urban planners, offering a robust framework for supporting sustainable transportation infrastructure and policies with advanced data-driven methodologies.

Pathogenesis of aquatic bird bornavirus 1 in turkeys of different age

Aquatic bird bornavirus 1 (ABBV1), an orthobornavirus in the family Bornaviridae, displays a broad host range among avian species, including poultry. The pathogenesis of orthobornaviruses, at least in mammals and psittacines, appears to be mediated by the host immune response against the infected nervous tissue, with younger animals showing a milder disease due to immune tolerance. Here, we tested the ability of ABBV1 to infect domestic turkeys (Meleagris gallopavo), with a focus on evaluating the impact of age at infection. Cohorts of 6-week-old (old) and day-old (young) male turkeys were divided into virus-inoculated and control groups, and kept for up to 12 weeks. Results showed that turkeys of both ages were susceptible to ABBV1 infection by intramuscular administration, following a centripetal and limited centrifugal spread, although infection appeared delayed in old compared to young birds. Notably, only young turkeys developed clinical signs and more frequent inflammation of the central nervous system, indicating that infection at a very early age is unlikely to induce tolerance to ABBV1 infection.

Brainstem serotonin amplifies nociceptive transmission in a mouse model of Parkinson’s disease

Parkinson’s disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson’s disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson’s disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation. Mice exhibited mechanical hypersensitivity associated with hyperexcitability of neurons in the dorsal horn of the spinal cord (DHSC). Serotonin (5-HT) levels increased in the spinal cord, correlating with reduced tyrosine hydroxylase (TH) immunoreactivity in the nucleus raphe magnus (NRM) and increased excitability of 5-HT neurons. Selective optogenetic inhibition of 5-HT neurons attenuated mechanical hypersensitivity and reduced DHSC hyperexcitability. In addition, the blockade of 5-HT2A and 5-HT3 receptors reduced mechanical hypersensitivity. These results reveal, for the first time, that PD-like dopamine depletion triggers spinal-mediated mechanical hypersensitivity, associated with serotonergic hyperactivity in the NRM, opening up new therapeutic avenues for Parkinson’s disease-associated pain targeting the serotonergic systems.

Responses

Your email address will not be published. Required fields are marked *