Related Articles

Bank lending and environmental quality in Gulf Cooperation Council countries

To achieve economies with net-zero carbon emissions, it is essential to develop a robust green financial intermediary channel. This study seeks empirical evidence on how domestic bank lending to sovereign and private sectors in Gulf Cooperation Council (GCC) countries impacts carbon dioxide and greenhouse gas emissions. We employ PMG-ARDL model to panel data comprising six countries in GCC over twenty years for carbon dioxide emissions and nineteen years for greenhouse gas emissions. Our findings reveal a long-term positive impact of both bank lending variables on carbon dioxide and greenhouse gas emissions. In addition, lending to the government shows a negative short-term effect on greenhouse gas emissions. The cross-country results demonstrate the presence of a long-run effect of explanatory variables on both types of emissions, except for greenhouse gas in Saudi Arabia. The sort-term impact of the explanatory variables on carbon dioxide and greenhouse gas emissions is quite diverse. Not only do these effects differ across countries, but some variables have opposing effects on the two types of emissions within a single country. The findings of this study present a new perspective for GCC economies: neglecting total greenhouse gas emissions and concentrating solely on carbon dioxide emissions means missing critical information for devising effective strategies to combat threats of environmental degradation and achieve net-zero goals.

Mechanisms of electrochemical hydrogenation of aromatic compound mixtures over a bimetallic PtRu catalyst

Efficient electrochemical hydrogenation (ECH) of organic compounds is essential for sustainability, promoting chemical feedstock circularity and synthetic fuel production. This study investigates the ECH of benzoic acid, phenol, guaiacol, and their mixtures, key components in upgradeable oils, using a carbon-supported PtRu catalyst under varying initial concentrations, temperatures, and current densities. Phenol achieved the highest conversion (83.17%) with a 60% Faradaic efficiency (FE). In mixtures, benzoic acid + phenol yielded the best performance (64.19% conversion, 74% FE), indicating a synergistic effect. Notably, BA consistently exhibited 100% selectivity for cyclohexane carboxylic acid (CCA) across all conditions. Density functional theory (DFT) calculations revealed that parallel adsorption of BA on the cathode (−1.12 eV) is more stable than perpendicular positioning (-0.58 eV), explaining the high selectivity for CCA. These findings provide a foundation for future developments in ECH of real pyrolysis oil.

A polyketide-based biosynthetic platform for diols, amino alcohols and hydroxy acids

Medium- and branched-chain diols and amino alcohols are important industrial solvents, polymer building blocks, cosmetics and pharmaceutical ingredients, yet biosynthetically challenging to produce. Here we present an approach that uses a modular polyketide synthase (PKS) platform for the efficient production of these compounds. This platform takes advantage of a versatile loading module from the rimocidin PKS and nicotinamide adenine dinucleotide phosphate-dependent terminal thioreductases. Reduction of the terminal aldehyde with alcohol dehydrogenases enables the production of diols, oxidation enables the production of hydroxy acids and specific transaminases allow the production of various amino alcohols. Furthermore, replacement of the malonyl-coenzyme A-specific acyltransferase in the extension module with methyl- or ethylmalonyl-coenzyme A-specific acyltransferase enables the production of branched-chain diols, amino alcohols and carboxylic acids in high titres. Use of our PKS platform in Streptomyces albus demonstrated the high tunability and efficiency of the platform.

Enantioselective C–H annulations enabled by either nickel- or cobalt-electrocatalysed C–H activation for catalyst-controlled chemodivergence

Enantioselective electrocatalysis shows unique potential for the sustainable assembly of enantiomerically enriched molecules. This approach allows electro-oxidative C–H activation to be performed paired to the hydrogen evolution reaction. Recent progress has featured scarce transition metals with limited availability. Here we reveal that the earth-abundant 3d transition metals nickel and cobalt exhibit distinctive performance for enantioselective electrocatalysis with chemodivergent reactivity patterns. Enantioselective desymmetrizations of strained bicyclic alkenes were achieved through C–H annulations. A data-driven optimization of chiral N,O-bidentate salicyloxazoline-type ligands was crucial for enhancing enantioselectivity in nickel electrocatalysis. Notably, in the transition state of the enantio-determining step, secondary weak attractive ππ and CH–π interactions were identified, reflecting the informed adaptations in the ligand design. Detailed mechanistic investigations by experimental and computational studies revealed for the nickel electrocatalysis a C–N bond-forming reductive elimination from nickel(III) and for the cobalt electrocatalysis a C–C bond-forming nucleophilic addition from cobalt(III) as the product-determining steps.

Electrocatalytic mechanism for overall water splitting to produce sustainable hydrogen by 2D Janus MoSH monolayer

In the present work, we investigates the potential of two dimensional (2D) Janus MoSH monolayer as an electrocatalyst for overall water splitting using first-principles calculations. Our results shows that 2D Janus MoSH monolayer exhibits excellent structural stability and electronic properties, which are essential for efficient electrocatalysis. We find that the charge transfer mechanism between Mo and S atoms plays a crucial role in the electrocatalytic activity of 2D Janus MoSH monolayer. Due to the asymmetric structure of MoSH monolayer, it has intrinsic electric field with dipole moment of 0.24 D. Moreover, we demonstrate that 2D Janus MoSH monolayer exhibits high catalytic activity for both hydrogen evolution reaction (HER) with overpotential 0.04 V and oxygen evolution reaction (OER) with overpotential 0.11 V, making it a promising candidate for overall water splitting. Our findings have significant implications for the design and optimization of 2D monolayered materials for renewable energy production. By providing insights into the underlying mechanisms of HER and OER on 2D Janus MoSH monolayer, our study paves the way for the development of efficient and sustainable electrocatalysts for water splitting. We hope that current work will be helpful in understanding the electrocatalytic mechanism of 2D Janus MoSH monolayer and its potential applications in renewable energy production.

Responses

Your email address will not be published. Required fields are marked *