Related Articles
Low-carbon ammonia production is essential for resilient and sustainable agriculture
Ammonia-based synthetic nitrogen fertilizers (N fertilizers) are critical for global food security. However, their production, primarily dependent on fossil fuels, is energy- and carbon-intensive and vulnerable to supply chain disruptions, affecting 1.8 billion people reliant on either imported fertilizers or natural gas. Here we examine the global N-fertilizer supply chain and analyse context-specific trade-offs of low-carbon ammonia production pathways. Carbon capture and storage can reduce overall emissions by up to 70%, but still relies on natural gas. Electrolytic and biochemical processes minimize emissions but are 2–3 times more expensive and require 100–300 times more land and water than the business-as-usual production. Decentralized production has the potential to reduce transportation costs, emissions, reliance on imports and price volatility, increasing agricultural productivity in the global south, but requires policy support. Interdisciplinary approaches are essential to understand these trade-offs and find resilient ways to feed a growing population while minimizing climate impacts.
Anion vacancies activate N2 to ammonia on Ba–Si orthosilicate oxynitride-hydride
Anion vacancies on metal oxide surfaces have been studied as either active sites or promoting sites in various chemical reactions involving oxidation/reduction processes. However, oxide materials rarely work effectively as catalysts in the absence of transition metal sites. Here we report a Ba–Si orthosilicate oxynitride–hydride as a transition-metal-free catalyst for efficient ammonia synthesis via an anion-vacancy–mediated mechanism. The facile desorption of H− and N3− anions plus the flexibility of the crystal structure can accommodate a high density of electrons at vacancy sites, where N2 can be captured and directly activated to ammonia through hydrogenation processes. The ammonia synthesis rates reach 40.1 mmol g−1 h−1 at 300 °C by loading ruthenium nanoparticles. Although not found to dissociate N2, Ru instead facilitates the formation of anion vacancies at the Ru–support interface. This demonstrates a new route for anion-vacancy–mediated heterogeneous catalysis.
Flash Joule heating for synthesis, upcycling and remediation
Electric heating methods are being developed and used to electrify industrial applications and lower their carbon emissions. Direct Joule resistive heating is an energy-efficient electric heating technique that has been widely tested at the bench scale and could replace some energy-intensive and carbon-intensive processes. In this Review, we discuss the use of flash Joule heating (FJH) in processes that are traditionally energy-intensive or carbon-intensive. FJH uses pulse current discharge to rapidly heat materials directly to a desired temperature; it has high-temperature capabilities (>3,000 °C), fast heating and cooling rates (>102 °C s−1), short duration (milliseconds to seconds) and high energy efficiency (~100%). Carbon materials and metastable inorganic materials can be synthesized using FJH from virgin materials and waste feedstocks. FJH is also applied in resource recovery (such as from e-waste) and waste upcycling. An emerging application is in environmental remediation, where FJH can be used to rapidly degrade perfluoroalkyl and polyfluoroalkyl substances and to remove or immobilize heavy metals in soil and solid wastes. Life-cycle and technoeconomic analyses suggest that FJH can reduce energy consumption and carbon emissions and be cost-efficient compared with existing methods. Bringing FJH to industrially relevant scales requires further equipment and engineering development.
Development of accessible and scalable maize pollen storage technology
The inherent short lifespan of Zea mays (maize, corn) pollen hinders crop improvement and challenges the hybrid seed production required to produce food, fuel, and feed. Decades of scientific effort on maize pollen storage technology have been unable to deliver a widely accessible protocol that works for liters of pollen at a hybrid seed production scale. Here we show how suppressing the pollen cellular respiration rate through refrigeration and optimizing gas exchange within the storage environment are the critical combination of factors for maintaining pollen viability in storage. The common practice of preserving maize pollen by mixing the pollen with talcum powder is critically examined using pollen tube germination testing, electron microscopy of pollen-silk (stigma) interaction, and test pollinations in production environments. These techniques lead to mixing maize pollen collected for storage with anti-clumping carrier compounds, including microcrystalline cellulose. These carriers improve stored pollen flowability during pollination and enable increased seed sets to be obtained from stored pollen. Field testing in maize seed production demonstrates that a wide range of pollen volumes can be stored for up to seven days using low-cost, globally available materials and that stored pollen can achieve seed-set equivalency to fresh pollen.
Dendritic phytic acid as a proton-conducting crosslinker for improved thermal stability and proton conductivity
There is growing interest in materials that exhibit enhanced proton conductivity at elevated temperatures without the need for humidification. Here, we develop a dendritic proton-conducting dopant for proton exchange membranes based on phytic acid (PhA) salts. PhA, which contains six phosphate groups capable of facilitating proton exchange, interacts with 4-dimethylaminopyridine (DMAP). DMAP serves as a strong electron donor, making it highly reactive with PhA. In this endeavor, cellulose sulfonic acid was selected as the base proton exchange membrane. Notably, the dimethylamino group of DMAP on the surface of DMAP-PhA acts as a basic site, enabling acid-base interactions with the sulfonic acid groups of cellulose sulfonic acid. As a result, DMAP-PhA functions as a proton-conducting crosslinker, significantly improving the thermal stability of the composites and increasing proton conductivity by enhancing the degree of proton dissociation at each interaction site.
Responses