Related Articles

Enhanced paracrine action of FGF21 in stromal cells delays thymic aging

Age-related thymic involution precedes aging of all other organs in vertebrates and initiates the process of declining T cell diversity, which leads to eventual immune dysfunction. Whether FGF21, a liver-derived pro-longevity hormone that is also produced in thymic stroma, including by adipocytes, controls the mechanism of thymic demise is incompletely understood. Here, we demonstrate that elevation of FGF21 in thymic epithelial cells (TECs) and in adipocytes protects against thymic aging, whereas conditional hepatic overexpression did not impact thymic biology in aged mice. Notably, elevation of thymic FGF21 increased naïve CD8 T cells in aged animals and extended healthspan. Mechanistically, thymic FGF21 overexpression elevated TECs and reduced fibroadipogenic cells. Ablation of β-klotho, the obligatory co-receptor for FGF21 in Foxn1+ TECs, accelerated thymic aging, suggesting regulation of TECs by FGF21 is partially required for thymic lymphopoiesis. These findings establish that paracrine FGF21 improves thymic function and delays immune aging.

Different types of cell death and their interactions in myocardial ischemia–reperfusion injury

Myocardial ischemia–reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers’ understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.

Tenascin-C promotes bone regeneration via inflammatory macrophages

During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages. TNC-deficiency in the periosteum delays bone repair. Transplantation of macrophages derived from injured periosteum is able to rescue the decreased skeletal stem cells and impaired bone regeneration caused by TNC deficiency. The cell communication analysis identifies ITGA7 as a TNC receptor contributing to the recruitment of inflammatory macrophages. TNC expression declines in aged mice and the exogenous delivery of TNC significantly promotes bone regeneration after aging through the recruitment of macrophages. Taken together, this study reveals the regulation of macrophage recruitment and its function in the activation of skeletal stem cells after bone injury, providing a strategy to accelerate bone regeneration by TNC delivery.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury. Importantly, our data demonstrated that the Sonic hedgehog (Shh) signaling was responsible for the transition process initiation, which was strongly activated by c-Jun/SIRT6/BAF170 complex-driven Shh enhancers. Collectively, these findings depict an injury-specific niche signal-mediated Plp1-lineage cells transition towards Gli1+ MSCs and may be instructive for approaches to promote bone regeneration during aging or other bone diseases.

Responses

Your email address will not be published. Required fields are marked *