Related Articles
Projected runoff declines from plant physiological effects on precipitation
The impact of plants on runoff under high atmospheric CO2 is a major uncertainty for future water resources. Theory and Earth system models (ESMs) suggest that stricter plant stomatal regulation under high CO2 will reduce transpiration, potentially boosting runoff. Yet, across a 12-member ensemble of idealized ESM simulations that isolate plant responses to CO2, we show that lower transpiration robustly enhances runoff over only 5% of modelled global land area. Precipitation changes are five times more important than transpiration changes in driving runoff responses and are a significant signal of CO2 physiological forcing over 31–57% of land areas across models. Crucially, ESMs largely disagree on where physiologically forced precipitation changes occur but agree that plant responses in most locations are as likely to reduce runoff as increase it. These results imply that large model uncertainties in precipitation responses, rather than transpiration responses, explain why ESMs disagree on plant physiologically driven runoff changes.
The role of rivers in the origin and future of Amazonian biodiversity
The rich biodiversity of Amazonia is shaped geographically and ecologically by its rivers and their cycles of seasonal flooding. Anthropogenic effects, such as deforestation, infrastructure development and extreme climatic events, threaten the ecological processes sustaining Amazonian ecosystems. In this Review, we explore the coupled evolution of Amazonian rivers and biodiversity associated with terrestrial and seasonally flooded environments, integrating geological, climatic, ecological and genetic evidence. Amazonia and its fluvial environments are highly heterogeneous, and the drainage system is historically dynamic and continually evolving; as a result, the discharge, sediment load and strength of rivers as barriers to biotic dispersal has changed through time. Ecological affinities of taxa, drainage rearrangements and variations in riverine landscape caused by past climate changes have mediated the evolution of the high diversity found in modern-day Amazonia. The connected history of the region’s biodiversity and landscape provides fundamental information for mitigating current and future impacts. However, incomplete knowledge about species taxonomy, distributions, habitat use, ecological interactions and occurrence patterns limits our understanding. Partnerships with Indigenous peoples and local communities, who have close ties to land and natural resources, are key to improving knowledge generation and dissemination, enabling better impact assessments, monitoring and management of the riverine systems at risk from evolving pressures.
Extreme drought-heatwave events threaten the biodiversity and stability of aquatic plankton communities in the Yangtze River ecosystems
Rivers are crucial to biogeochemical cycles, connecting terrestrial, oceanic, and atmospheric systems. However, their ecosystems are increasingly threatened by extreme weather events. Here we used the environmental DNA approach to assess the impact of extreme drought-heatwave events on the aquatic plankton communities of the Yangtze River. We showed that an extreme drought-heatwave event reduced the α diversity of communities, increased their β diversity, and simultaneously simplified and destabilized community network structure. This event also shifted the dominant algae taxa from Bacillariophyta to Cyanobacteria, accompanied by increases in organic carbon and labile organic carbon contents. Globally, temperature rises during this extreme drought-heatwave event are more pronounced in high-latitude regions, likely amplifying impacts on river ecosystem biodiversity and stability. Our findings highlight the vulnerability of river ecosystems to extreme events and underscore the need to mitigate climate change’s effects on river ecosystems.
Profiles of antibiotic resistome risk in diverse water environments
The water environment is considered to be a reservoir for antibiotic resistant bacteria and antibiotic resistance genes. However, profiles of antibiotic resistome risk in different water environments remain largely underexplored. Here we found that the number, abundance and risk of antibiotic resistance genes in wastewater, especially slaughterhouse wastewater, were higher than those in natural water. Then, 6167 high-quality metagenome-assembled genomes were obtained. The main hosts were Escherichia, Desulfobacter, Citrobacter and Pseudomonas_E, respectively. Moreover, distinct of patterns of horizontal gene transfer were observed in different microbes. Overall, microbial composition and resistance risk varied in different water environments and there was a correlation between microbial composition and resistome risk. Therefore, models based on microbial composition were constructed with an accuracy of 86.87 ± 1.18% for predicting the risk of resistance in unknown water environments, providing an essential reference for dealing with antibiotic-resistant pollution and for water management.
Sustainable solutions for water scarcity: a review of electrostatic fog harvesting technology
Amid global climate change and population growth, traditional water acquisition methods face challenges. Electrostatic fog harvesting technology offers a novel solution for arid regions, leveraging space charges and electric fields to convert fog into usable water. This article explores the fundamental processes, structure, and enhancement methods of electrostatic fog collectors (EFC), focusing on recent research progress. We offer a prospective perspective on the future research of electrostatic fog harvesting technology, with the aim of facilitating the transition of this technology from scientific research to practical application.
Responses